Discrete Element Method Analysis of Mechanical Properties of Railway Ballast during Tamping Process under Different Amplitude

2012 ◽  
Vol 233 ◽  
pp. 224-227 ◽  
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Xue Jun Wang ◽  
Bo Yan

Railway ballast tamping operations is an important work in the line maintenance and repair operations, the selection of tamping parameter is usually dependent on field trials and practical experience, for the mechanical properties of railway ballast is difficult to measure and describe. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the mechanical properties of railway ballast during tamping process. We focus on the influence of amplitude during tamping process; an optimal amplitude of the simulation analysis is obtained and compared with the recommended amplitude of Plasser & Theurer Company, it is found that the two amplitudes accord. This result verifies the correct validity of the discrete element analysis model of railway ballast during tamping process.

2012 ◽  
Vol 190-191 ◽  
pp. 369-372
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Xue Jun Wang ◽  
Bo Yan

Railway ballast tamping operations is an important work in the line maintenance and repair operations, the selection of tamping parameter is usually dependent on field trials and practical experience, for lack of theoretical basis. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the mechanical properties of railway ballast during tamping process. We focus on the influence of vibration frequency during tamping process; an optimal vibration frequency of the simulation analysis is obtained and compared with the recommended vibration frequency of Plasser & Theurer Company, it is found that the two vibration frequencies accord. This result verifies the correct validity of the discrete element analysis model of railway ballast during tamping process.


2013 ◽  
Vol 690-693 ◽  
pp. 2726-2729 ◽  
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Bo Yan ◽  
Ping Xu

Railway ballast tamping operations is employed in order to restore the geometry of railway track distorted by train traffics. The selection of tamping parameter is usually dependent on field trials and practical experience, for lack of theoretical basis. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the mesomechanics of railway ballast during tamping process. We focus on the change of railway ballast compactness and stone ballast interaction force during tamping process. The present study can be helpful for the analysis of the internal mechanism of ballast compaction during tamping process.


2014 ◽  
Vol 988 ◽  
pp. 315-318
Author(s):  
Bo Yan ◽  
Bin Hu ◽  
Ya Yu Huang ◽  
Tao Yong Zhou

Railway ballast dynamic stability operations is an important work in the line maintenance and repair operations, the selection of dynamic parameter is usually dependent on field trials and practical experience, for lack of theoretical basis. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the lateral ballast resistance during dynamic stability process. We focus on the influence of vibration frequency during dynamic stability process; an optimal vibration frequency of the simulation analysis is obtained and compared with the recommended vibration frequency of a product of a China Railway Large Maintenance Machinery Company, it is found that the two vibration frequencies are basically consistent. This result verifies the correct validity of the discrete element analysis model of railway ballast during dynamic stability process.


2013 ◽  
Vol 690-693 ◽  
pp. 2730-2733
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Bo Yan ◽  
Jun Feng Sun

Railway ballast tamping operations is employed in order to restore the geometry of railway track distorted by train traffics. The main goal is to compact the stone ballast under the sleepers supporting the railway squeezing and vibrations. The ballast compactness is the most direct index for evaluating the effect of tamping operation. This paper presents an experimental method used to detect the railway ballast compactness before and after tamping operation based on water-filling method, and creates a discrete element analysis model of railway ballast which analyzes the change of ballast compactness before and after tamping operation based on discrete element method. The simulation results are very similar with experimental results, which verify that the discrete element method is an effective method to evaluate the change of railway ballast compactness during tamping process.


2013 ◽  
Vol 7 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Taoyong Zhou ◽  
Bin Hu ◽  
Junfeng Sun ◽  
Zhongtian Liu

Railway ballast tamping operation is employed in order to restore the geometry of railway track distorted by train traffics. In this paper, based on analysis of tamping principle, the discrete element analysis model of railway ballast is created using the discrete element method, numerical simulations are performed to study the change of railway ballast compactness during tamping process. This paper presents the motion trend of stone ballasts as the change trend of railway ballast compactness in qualitative analysis, and the distance between stone ballast and sleeper as the change index of railway ballast compactness in quantitative analysis. By comparing simulation data of different vibration frequencies, an optimal vibration frequency is obtained. The simulation results accord with the actual industrial tamping operation, which verifies that the discrete element method is an effective method to evaluate the change of railway ballast compactness during tamping process.


2014 ◽  
Vol 919-921 ◽  
pp. 1124-1127
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Xue Yu Zhao ◽  
Bo Yan

Tamping operation is an important part of railway maintenance work. The porosity of railway ballast is an important maintenance quality evaluation index during tamping process. In this paper, based on the discrete characteristics of railway ballast, the discrete element analysis model of railway ballast is created using the discrete element method, numerical simulations are performed to study the evolution of porosity of railway ballast under sleeper during tamping process. This paper focuses on the influence of vibration frequency of tamping tines during tamping process; an optimal vibration frequency is obtained from the simulation and compared with the actual vibration frequency recommended by China Railway Large Maintenance Machinery Co., Ltd. Kunming, it is found that the two vibration frequency is consistent. This result verifies that the discrete element method is an effective method to study the evolution of porosity of railway ballast during tamping process.


2015 ◽  
Vol 59 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Kornél Tamás ◽  
Bernát Földesi ◽  
János Péter Rádics ◽  
István J. Jóri ◽  
László Fenyvesi

2018 ◽  
Vol 169 ◽  
pp. 01035
Author(s):  
Qinghui Lai ◽  
Ziwu Hua ◽  
Jinlong Xing ◽  
Wenpeng Ma

The cell wheel seed metering device was improved and a stirring seed-filling device was added to improve the seed-filling performance of cell wheel pseudo-ginseng precision seed metering devices. Using pseudo-ginseng seeds in Wenshan Prefecture, Yunnan Province as the objects for seed metering, the software application EDEM was adopted based on the discrete element method for the simulation calculation and analysis of the seed-filling performance of the seed metering device under 4 rotational speeds of the cell wheel and 6 rotational speeds of the stir wheel. The simulation results indicate that the filling ratio increases as the rotational speed of the stir wheel increases under a constant rotational speed of the cell wheel. Test verification of the simulation analysis results was conducted on the test bed of the seed metering device. The results indicate that increasing the rotational speed of the stir wheel can obtain a filling ratio of over 90%. The test results display a similar variation trend to that of the simulation analysis with an error of average filling ratio less than 5%. Therefore, it is feasible to analyze the seed-filling performance of the stirring and seed-filling device of the seed metering device with the discrete element method.


Sign in / Sign up

Export Citation Format

Share Document