Numerical investigation on the cooling-related mechanical properties of heated Australian Strathbogie granite using Discrete Element Method

2020 ◽  
Vol 264 ◽  
pp. 105371
Author(s):  
Hui Liu ◽  
Kai Zhang ◽  
Shishi Shao ◽  
Pathegama Gamage Ranjith
2015 ◽  
Vol 59 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Kornél Tamás ◽  
Bernát Földesi ◽  
János Péter Rádics ◽  
István J. Jóri ◽  
László Fenyvesi

2013 ◽  
Vol 353-356 ◽  
pp. 802-805
Author(s):  
Jian Qing Jiang

Red-sandstone granular soil reinforced with gabion-mesh is a new concept of composite reinforced soil. In order to reveal the mechanical properties of this composite reinforced soil, a series of laboratory triaxial compression tests on specimens reinforced with gabion-mesh were carried out, and 3D discrete element method was introduced to simulate the triaxial tests. The macro stress-strain relation of red-sandstone specimens reinforced with gabion-mesh was reproduced by the 3D discrete element model. The results show that 3D discrete element method is an ideal technique to study the meso-mechanical nature characteristics of gabion-mesh reinforced red-sandstone granular soil.


2012 ◽  
Vol 233 ◽  
pp. 224-227 ◽  
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Xue Jun Wang ◽  
Bo Yan

Railway ballast tamping operations is an important work in the line maintenance and repair operations, the selection of tamping parameter is usually dependent on field trials and practical experience, for the mechanical properties of railway ballast is difficult to measure and describe. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the mechanical properties of railway ballast during tamping process. We focus on the influence of amplitude during tamping process; an optimal amplitude of the simulation analysis is obtained and compared with the recommended amplitude of Plasser & Theurer Company, it is found that the two amplitudes accord. This result verifies the correct validity of the discrete element analysis model of railway ballast during tamping process.


2021 ◽  
Vol 249 ◽  
pp. 07010
Author(s):  
Wei Pin Goh ◽  
Mojtaba Ghadiri

Milling is an important process for tailoring the particle size distribution for enhanced attributes, such as dissolution, content uniformity, tableting, etc., especially for active pharmaceutical ingredients and excipients in pharmaceutical industries. Milling performance of particulate solids depends on the equipment operating conditions (geometry, process conditions and input energy etc.) as well as material properties (particle size, shape, and mechanical properties, such as Young’s modulus, hardness and fracture toughness). In this paper the particle dynamics in a pin mill is analysed using Discrete Element Method (DEM), combined with a novel approach for assessing particle breakability by single particle impact testing. A sensitivity analysis is carried out addressing the effect of the milling conditions (rotational speed and feed particle flow rate), accounting for feed mechanical properties on the breakage behaviour of the particles. Particle collision energy spectra are calculated and shown to have a distribution with the upper tail end being close to the maximum energy associated with the collision with the rings. Breakage is primarily due to collisions with the rings, except for large particles that are comparable in size with the gap between the rings, nipping is also a contributory breakage mechanism.


2007 ◽  
Vol 353-358 ◽  
pp. 2973-2976 ◽  
Author(s):  
Yu Yong Jiao ◽  
Xiu Li Zhang ◽  
Shui Lin Wang ◽  
Huo Zhen Wu

This study is to present a numerical investigation on fragmentation and perforation of concrete slab by hard projectile using discrete particle approaches. Discrete Element Method (DEM) and Discontinuous Deformation Analysis (DDA), the two representative discrete particle approaches, are employed to simulate a normal perforation of concrete slab by a hard ogival-nose shaped projectile, and the phenomena of spalling, plugging and scabbing are reproduced.


Sign in / Sign up

Export Citation Format

Share Document