Distributed Street Lighting Control System with IntelliSense

2012 ◽  
Vol 241-244 ◽  
pp. 1869-1874
Author(s):  
Feng Li ◽  
Fan Yang

In this paper, we proposed a novel street lighting system called Distributed Street Lighting Control System with IntelliSense (DSLCSI), and on this basis, five-end architecture, an ItelliSense extension mechanism and a cable theft detection method are described in turn. DSLCSI is presented to overcome the complex configuration, poor scalability and low reliability of cable theft detection methods in existing street lighting system. The results of field application show that DSLCSI provides convenient system scalability and maintainability, and improves the reliability of cable theft detection.

Author(s):  
Syifaul Fuada ◽  
Trio Adiono ◽  
Lindawani Siregar

In this paper, we report a smart street lighting control system using the ESP8266 which is a low-cost Wi-Fi chip with full TCP/IP stack and microcontroller capability. Our system is equipped with a web server developed in HTML code. Hence, our smart street lighting system can be controlled wirelessly to turn ON or turn OFF, and it can be monitored its environmental condition (i.e., temperature and humidity around the system). All sensors used in this system are pure digitally-outputted sensor: DHT11 to monitor the ambient temperature and humidity and BH1750 to adjust the street light intensity automatically. The dimming technique was applied in the control system by using Pulse Width Modulation (PWM). The system was divided into two main parts: Gateway and Node in which these two parts employ the ESP8266. The Gateway as a coordinator will send a message to the node as an end device (in this work, the streetlight act as a Node). Later, the node will send the ACK to the Gateway. As results, each node can send a message to other nodes.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manop Yingram ◽  
Suttichai Premrudeepreechacharn

The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast.ΔP/P>38.41% could determine anti-islanding condition within 0.04 s;ΔP/P<-24.39% could determine anti-islanding condition within 0.04 s;-24.39%≤ΔP/P≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of-24.39% ≤ΔP/P ≤38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.


Author(s):  
A.A. Ashryatov ◽  
V.G. Kulikov ◽  
A.V. Panteleyev

<p>Currently, energy saving requires the development of simple and efficient street lighting control systems. In order to create such a control system, it is necessary to develop an original principle of its operation. They considered the advantages of electronic starting devices in street lighting control systems. They performed the analysis of the existing state of street lighting means, their shortcomings and solutions have been determined, and they developed the method of lighting device automatic control. They performed the assessment of the economic effect from loss reduction associated with reactive power and due to power reduction during deep night. They presented the example of economic effect achievement from the use of an electronic starting device with automatic power reduction.</p>


2011 ◽  
Vol 467-469 ◽  
pp. 331-334
Author(s):  
Chang You Wang ◽  
Xiao Feng Yao

Airfield lighting system is necessary visual aids to ensure the normal movements of aircraft at night or under low visibility conditions. A hybrid network monitoring system based on CAN bus and Ethernet was introduced in the paper according to the actuality of national airfield lighting control system. The AC chop voltage regulating technology was adopted to adjust light level in the Dimmer what is the core of the system, configuration software, hybrid network technology were used to realize the remote monitoring, overall design scheme, the choice of hardware and software platform, and the realization method of network communication were gave out in the paper. Experimental results show that system performance is superior, and be worth promoting.


节能环保 ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 12-13
Author(s):  
Hualian Zheng ◽  

Intelligent lighting control system is the symbol of green lighting in modern society, and it is also one of the indispensable core technologies in modern lighting. Adding many control switches to the lighting circuit to control the whole lighting system, or controlling the dimming function of the lamp through the control gauge technology is the traditional lighting mode.


2013 ◽  
Vol 753-755 ◽  
pp. 2637-2640
Author(s):  
Bang Cheng Zhang ◽  
Hua Zhen Wang ◽  
Yan Qing Jiang ◽  
Yan Juan Hu

In order to meet the requirements of high stability, high vibration resistance, energy saving and environmental protection and long service life for the railway vehicle car lighting system, this paper designed a LED (Light Emitting Diode) lighting control system suitable for railway vehicles car. Using IPC for the principal computer, microcontroller for the subordinate computer, CAN bus as the communication network. Multiple brightness sensor collect the brightness information of car environment. According to the characteristics that the LED is suitable for high frequency switch power, using PWM technology, the current though the LED light can be control. ATmega16 microcontroller as the control core can automatically to adjust the brightness of the car according to the change of external environment, it ensured that the LED light emitting uniform and stable so that this kind of control system has very high application value.


2013 ◽  
Vol 330 ◽  
pp. 587-591
Author(s):  
Qing Wei ◽  
Hong Yan Ma

The lighting system is an integral part of the whole building. Lighting control system is an important part of the lighting system and lighting design. As increasingly severe of the energy issues, energy saving has become one of the problems to be solved in the lighting control system. This paper takes a normally used office as an example. Control the blinds and the lamps in the office reasonably. On the premise of the full use of daylight, make the office achieve the most comfortable illumination by using artificial lighting supplies.


2014 ◽  
Vol 511-512 ◽  
pp. 1225-1229
Author(s):  
Shan Hu ◽  
Li Guo Tian ◽  
Xiao Liang Cheng ◽  
Meng Li

This paper proposes an intelligent lighting control system based on CAN. Compared with the traditional lighting control system, it overcomes the effect of relatively scattered control and disadvantages of poor management, poor real-time and low degree of automation. In explaining the overall design of intelligent lighting system framework and communication protocols based on CAN bus communication, it analyzes the real time capability and puts forward the optimization scheme. It also proposes an implementation of SJA1000 CAN communication modules to achieve application to intelligent lighting system.


2020 ◽  
pp. 60-70
Author(s):  
Murat Ayaz ◽  
Ugur Yucel ◽  
Koray Erhan ◽  
Engin Ozdemir

In this study, design and implementation of a new cost-efficient daylight-based lighting control system is proposed to provide energy saving in a public building with a conventional lighting system. Energy gain recovery and regional daylight utilization coefficients are obtained by conducting daylight measurements in all indoor spaces of the building where the proposed lighting system will be applied. Daylight value is continuously transferred to the control system through the pyranometer placed outside and the need for artificial lighting is calculated by using sectional daylight utilization coefficients. Thereby, maximum benefit from daylight is realized when unnecessary energy consumption for artificial lighting is reduced. Experimental measurement results show that the proposed daylight-based lighting control system provides an average energy efficiency of the building at the level of 60 %. Additionally, the required investment, such as operating cost and payback period for converting an existing conventional lighting system into the proposed system, are discussed in detail. Cost analysis shows that the payback period of the proposed system can be reduced by 5 years compared to the conventional system.


Sign in / Sign up

Export Citation Format

Share Document