The Refined Equations of Special Orthotropic Piezoelectric Plate-I: Anti-Symmetrical Transverse Surface Loadings

2012 ◽  
Vol 249-250 ◽  
pp. 348-351
Author(s):  
Bao Sheng Zhao ◽  
Di Wu

The deformation field and stress states of special orthotropic piezoelectric plate are analyzed. Based on elastic theory, the refined equations of bending thick plate are derived by using Elliott-Lodge’s general solution and Lur’e method without ad hoc assumptions. At first, expressions were obtained for all the displacements and stress components of a piezoelectric plate. Based on boundary conditions, the refined equations for the plate with anti-symmetrical transverse surface loading are obtained.

2012 ◽  
Vol 249-250 ◽  
pp. 352-355
Author(s):  
Bao Sheng Zhao ◽  
Di Wu

The refined equations of special orthotropic piezoelectric plate are analyzed. Based on elastic theory, the refined equations of plane problem are derived by using Elliott-Lodge’s general solution and Lur’e method without ad hoc assumptions. The exact deformation field and exact stress field are represented by unknown functions with two independent variables. Based on boundary conditions, the refined equations for the generalized plane problem with symmetrical transverse surface loading are obtained.


2011 ◽  
Vol 213 ◽  
pp. 206-210
Author(s):  
Bao Sheng Zhao ◽  
Jia Lian Shi ◽  
Ying Tao Zhao ◽  
Yang Gao

Gregory’s decomposed theorem of isotropic plate is extended to investigate torsional circular shaft of cubic quasicrystal with homogeneous boundary conditions, and the theory of equivalence that Cheng’s refined theory and Gregory’s decomposed theorem is extended to the cylindrical coordinate. The general solution of torsional circular shaft on cubic quasicrystal with homogeneous boundary conditions is proposed on the basis of the classical elasticity theory and stress-displacement relations of cubic quasicrystal without ad hoc assumptions. At first expressions are obtained for all the displacements and stress components in term of some 1D functions. Using Lur’e method, the exact equations were given. And the exact equations for the torsional circular shaft on cubic quasicrystal without surface loadings consist of four governing differential equations: two harmonic equations and two transcendental equations. Using basic mathematic method and the general solutions, an example is examined.


2012 ◽  
Vol 217-219 ◽  
pp. 1421-1424 ◽  
Author(s):  
Bao Sheng Zhao ◽  
Di Wu

A refined theory of axisymmetric cylinder in one-dimensional (1D) hexagonal quasicrystals (QCs) is analyzed. Based on elastic theory with 1D hexagonal QCs, the refined theory of axisymmetric cylinder is derived by using general solution of 1D hexagonal QCs and Lur’e method without ad hoc assumptions. At first, expressions were obtained for all the phonon and phason displacements and stress components in term of the three functions with single independent variable. Based on the boundary conditions, the refined equation for the cylinder is derived directly. And the approximate equation is accurate up to the second-order terms with respect to radius of circular cylinder.


2012 ◽  
Vol 204-208 ◽  
pp. 1499-1502 ◽  
Author(s):  
Gui Jun Wang ◽  
Peng Xie

Based upon the elastic theory, the gas and oil storage cavern in bedded salt rock formation is generalized as a spatially axisymmetric model. A Love function was built from polynomial and logarithmic functions at first, and then solved, considering the gravity, the internal gas and oil pressure of the cavern, the boundary conditions, as well as the continuity conditions at the interface between salt and non-salt media. Finally, the elastic displacement and stress components are achieved which are satisfied to the main boundary and continuity conditions.


2011 ◽  
Vol 341-342 ◽  
pp. 1-5 ◽  
Author(s):  
Bao Sheng Zhao ◽  
Ying Tao Zhao ◽  
Yang Gao

Gregory’s decomposed theorem of isotropic plate is extended to investigate torsional circular shaft for two-dimensional dodecagonal quasicrystal (2D dodecagonal QCs)with homogeneous boundary conditions, and the theory of equivalence that Cheng’s refined theory and Gregory’s decomposed theorem is extended to the cylindrical coordinate. The decomposed theorem of torsional circular shaft of 2D dodecagonal QCs with homogeneous boundary conditions is proposed on the basis of the classical elasticity theory and stress-displacement relations of 2D dodecagonal QCs without ad hoc assumptions. At first expressions are obtained for all the displacements and stress components in term of some 1D functions. Using Lur’e method, the exact equations were given. And the exact equations for the torsional circular shaft on 2D dodecagonal QCs without surface loadings consist of four governing differential equations: two harmonic equations and two transcendental equations.


1991 ◽  
Vol 06 (22) ◽  
pp. 3997-4008 ◽  
Author(s):  
W. SIEGEL

In the BRST approach to first quantization, bosonic ghosts can cause ambiguities in the cohomology (and thus in second quantization). We show how nonminimal terms give a general solution to this problem, avoiding the need for “picture-changing operators.” As examples, we consider spinning particles, superparticles, covariantized light cone bosonic string field theory, and NSR superstring field theory.


2016 ◽  
Vol 25 (03) ◽  
pp. 1630009 ◽  
Author(s):  
S. Jalalzadeh ◽  
T. Rostami ◽  
P. V. Moniz

We review pedagogically some of the basic essentials regarding recent results intertwining boundary conditions, the algebra of constraints and hidden symmetries in quantum cosmology. They were extensively published in Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014), S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439 and T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212], where complete discussions and full details can be found. More concretely, in Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014) and S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439] it has been shown that specific boundary conditions can be related to the algebra of Dirac observables. Moreover, a process afterwards associated to the algebra of existent hidden symmetries, from which the boundary conditions can be selected, was introduced. On the other hand, in Ref. [T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212] it was subsequently argued that some factor ordering choices can be extracted from the hidden symmetries structure of the minisuperspace model.In Refs. [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 89 (2014), S. Jalalzadeh, T. Rostami and P. V. Moniz, Eur. Phys. J. C 75 (2015) 38, arXiv:gr-qc/1412.6439 and T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212], we proceeded gradually towards less simple models, ranging from a FLRW model with a perfect fluid [S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz, Phys. Rev. D 90 (2014) 023541] up to a conformal scalar field content [T. Rostami, S. Jalalzadeh and P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212]. We envisage that we could extend this framework towards a class of shape invariant potentials, which could include well known analytically solvable cosmological cases. Provided, we identify integrability in terms of the shape invariance conditions, we could eventually consider to import features of supersymmetric quantum mechanics towards quantum cosmology [P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 1: Fundamentals, Lecture Notes in Physics, Vol. 803 (Springer-Verlag, Berlin, 2010), P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 2: Advanced Topics, Lecture Notes in Physics, Vol. 804 (Springer, New York, 2010)], which we will also discuss in this review.Another point to emphasize is that by means of a hidden symmetry and then an algebra of Dirac observables, boundary conditions are extracted (and not ad hoc formulated) within a framework intrinsic to each model dynamics. Therefore, meeting DeWitt’s conjecture [B. S. DeWitt, Phys. Rev. 160 (1967) 1113] that “the constraints are everything” and nothing else but the constraints should be needed.


1998 ◽  
Vol 65 (2) ◽  
pp. 476-478
Author(s):  
N. Morozov ◽  
I. Sourovtsova

The study of the problem of wave propagation in elastic wedge meets considerable difficulties, which are intensified by the presence of waves of two types that interact with each other through boundary conditions. However, some special surface loading permits separation of the potentials in the boundary conditions, but even in this case the problem cannot be simply reduced to two acoustic ones. The reason for this is that the edge condition cannot be satisfied if the disturbances are limited to a single type (longitudinal or shear). In spite of this the problem, such a special boundary loading nevertheless turns out to be very similar to the acoustic one, which makes it possible to find a closed analytical solution by means of the modified Kostrov method (Kostrov, 1966) and the idea of extension of operators. A similar approach is used for the study of the general problem of loading of the body with several angles.


Sign in / Sign up

Export Citation Format

Share Document