Attitude Coordination Control of Spacecraft Formation

2012 ◽  
Vol 263-266 ◽  
pp. 795-802
Author(s):  
Man Guo Liu ◽  
Ke Zhang

In this paper, we study adaptive attitude synchronization of spacecraft formation with switching topology. By introducing a novel adaptive control architecture and by transforming the attitude dynamics into Euler-Lagrange form, decentralized controllers are developed, which allow for parametric uncertainties and unknown external disturbances. Based upon graph theory and Lyapunov stability theory, rigid mathematical analysis on system stability is provided. A distinctive feature of this work is to address the adaptive attitude synchronization with general directed information flow. It is shown that arbitrary desired constant relative orientations within the group or with respect to any external references can be attained. Simulation results are provided to demonstrate the effectiveness of the obtained results.

2021 ◽  
Author(s):  
Alexander Frias

Spacecraft formation flying with coupled orbital-attitude dynamics is one of the most intriguing topics in the field of astronautics. Orbital-attitude coupling is induced when a non-symmetrical spacecraft in orbit is disturbed by means of active maneuvering or by external disturbances. Direct contributing factors to the coupled dynamics include the orbital radius, the gravitational parameter and the orbital angular velocity. Disturbance due to coupling is inherently weak in nature (in the order of magnitudes of 10


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. E. Rodríguez-Mata ◽  
G. Flores ◽  
A. H. Martínez-Vásquez ◽  
Z. D. Mora-Felix ◽  
R. Castro-Linares ◽  
...  

A control algorithm that is robust with respect to wind disturbances for a quadrotor UAV attitude dynamics is presented. The proposed approach consists of a high-gain observer based on a discontinuous technique. Such an algorithm is embedded on board the quadrotor. The high-gain observer estimates external disturbances such as wind and parameter uncertainties, and a control algorithm is designed to compensate these undesired effects. The observer design is based on Lyapunov stability theory; simulation results and experiments validate the nonlinear observer performance and robustness of the approach under windy conditions. Also, a photogrammetry survey was carried out to develop Digital Elevation Models in order to experimentally demonstrate the effectiveness of our approach. The accuracy of such models was compared and the performance improvement is demonstrated.


2021 ◽  
Author(s):  
Alexander Frias

Spacecraft formation flying with coupled orbital-attitude dynamics is one of the most intriguing topics in the field of astronautics. Orbital-attitude coupling is induced when a non-symmetrical spacecraft in orbit is disturbed by means of active maneuvering or by external disturbances. Direct contributing factors to the coupled dynamics include the orbital radius, the gravitational parameter and the orbital angular velocity. Disturbance due to coupling is inherently weak in nature (in the order of magnitudes of 10


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110033
Author(s):  
Javad Mostafaee ◽  
Saleh Mobayen ◽  
Behrouz Vaseghi ◽  
Mohammad Vahedi ◽  
Afef Fekih

This paper proposes a novel exponential hyper–chaotic system with complex dynamic behaviors. It also analyzes the chaotic attractor, bifurcation diagram, equilibrium points, Poincare map, Kaplan–Yorke dimension, and Lyapunov exponent behaviors. A fast terminal sliding mode control scheme is then designed to ensure the fast synchronization and stability of the new exponential hyper–chaotic system. Stability analysis was performed using the Lyapunov stability theory. One of the main features of the proposed controller is the finite time stability of the terminal sliding surface designed with high–order power function of error and derivative of error. The approach was implemented for image cryptosystem. Color image encryption was carried out to confirm the performance of the new hyper–chaotic system. For image encryption, the DNA encryption-based RGB algorithm was used. Performance assessment of the proposed approach confirmed the ability of the proposed hyper–chaotic system to increase the security of image encryption.


2021 ◽  
Vol 11 (14) ◽  
pp. 6299
Author(s):  
Xiong Xie ◽  
Tao Sheng ◽  
Liang He

The distributed attitude synchronization control problem for spacecraft formation flying subject to limited energy and computational resources is addressed based on event-triggered mechanism. Firstly, a distributed event-driven controller is designed to achieve attitude coordination with the limitation of energy and computing resources. Under the proposed control strategy, the controller is only updated at the event triggering instants, which effectively reduces the update frequency. Subsequently, an event-triggered strategy is developed to further decrease energy consumption and the amount of computation. The proposed event-triggered function only requires the latest state information about its neighbors, implying that the trigger threshold does not need to be calculated continuously. It is shown that the triggering interval between two successive events is strictly positive, showing that the control system has no Zeno phenomenon. Moreover, the update frequency of the proposed controller can be reduced by more than 90% compared to the update frequency of the corresponding time-driven controller with an update frequency of 10 Hz by choosing appropriate control parameters and the control system can still achieve high-precision convergence. Finally, the effectiveness of the constructed control scheme is verified by numerical simulations.


Author(s):  
Guoqing Zhang ◽  
Shen Gao ◽  
Jiqiang Li ◽  
Weidong Zhang

This study investigates the course-tracking problem for the unmanned surface vehicle in the presence of constraints of the actuator faults, control gain uncertainties, and environmental disturbance. A novel event-triggered robust neural control algorithm is proposed by fusing the robust neural damping technique and the event-triggered input mechanism. In the algorithm, no prior information of the system model about the unknown yawing dynamic parameters and unknown external disturbances is required. The transmission burden between the controller and the actuator could be relieved. Moreover, the control gain-related uncertainties and the unknown actuator faults are compensated through two updated online adaptive parameters. Sufficient effort has been made to verify the semi-global uniform ultimate bounded stability for the closed-loop system based on Lyapunov stability theory. Finally, simulation results are presented to illustrate the effectiveness and superiority of the proposed algorithm.


2008 ◽  
Vol 18 (08) ◽  
pp. 2425-2435 ◽  
Author(s):  
SAMUEL BOWONG ◽  
RENÉ YAMAPI

This study addresses the adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. For a class of uncertain chaotic systems with parameter mismatch and external disturbances, a robust adaptive observer based on the response system is constructed to practically synchronize the uncertain drive chaotic system. Lyapunov stability theory ensures the practical synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of two illustrative examples are given to verify the effectiveness of the proposed method.


Author(s):  
Zhong-Zhe Yue ◽  
Jing-Guang Sun

This study investigates the flight longitudinal tracking control problem of hypersonic vehicle in presence of the input saturation, external disturbances, model parametric uncertainties, and actuator faults. First, the velocity and altitude subsystem are established with disturbances based on the feedback linearization model. Second, two robust anti-saturation fault-tolerant controllers are designed for the velocity subsystem and altitude subsystem by the utilization of the tangent function, Nussbaum function, and adaptive nonlinear filter. Finally, Lyapunov stability theory is used to prove that the states of the closed-loop system are bounded. And, the effectiveness and robustness of the control strategy are proved by numerical simulations.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
G. Nava-Antonio ◽  
G. Fernández-Anaya ◽  
E. G. Hernández-Martínez ◽  
J. J. Flores-Godoy ◽  
E. D. Ferreira-Vázquez

In this paper, we unify and extend recent developments in Lyapunov stability theory to present techniques to determine the asymptotic stability of six types of fractional dynamical systems. These differ by being modeled with one of the following fractional derivatives: the Caputo derivative, the Caputo distributed order derivative, the variable order derivative, the conformable derivative, the local fractional derivative, or the distributed order conformable derivative (the latter defined in this work). Additionally, we apply these results to study the consensus of a fractional multiagent system, considering all of the aforementioned fractional operators. Our analysis covers multiagent systems with linear and nonlinear dynamics, affected by bounded external disturbances and described by fixed directed graphs. Lastly, examples, which are solved analytically and numerically, are presented to validate our contributions.


Sign in / Sign up

Export Citation Format

Share Document