Power Factor Detection Methods Based on Atmega128

2013 ◽  
Vol 291-294 ◽  
pp. 2340-2345
Author(s):  
Zheng Rong Jiang ◽  
Dong Ming Ma

There are three sampling methods for reactive power compensation controller, including active power factor detecting, reactive power detecting and reactive current detecting. This paper describes the power factor detecting, which use the avr microcontroller to detect load power factor, besides, the principles and characteristics of two different detection methods are presented, the detecting accuracy is compared between the same phase detecting method and using FFT algorithm.

2021 ◽  
pp. 17-25
Author(s):  
L. Kovernikova ◽  
N.H. Bui ◽  
T.C. Ha ◽  
D.T. Pham ◽  
L. Semenova ◽  
...  

The coal grading plants in Viet Nam extensively apply induction motors. Induction motors consume active and reactive power from the power supply systems. The reactive power flowing through the electrical network creates active power losses. The reactive power received from power utilities reduces the load power factor at the node where coal sorting plants are connected to the supply network. Frequency-controlled induction motors introduce distortions into the electrical network because they are electrical equipment with a nonlinear current-voltage characteristic. Non-sinusoidal current and voltage cause additional losses of active power in the electrical network and electrical equipment, thereby shortening its service life, reducing the reliability of operation, and causing economic damage. Active filters can solve these problems. The paper proposes an optimization algorithm for determining the apparent power of the active filter, which provides the load power factor and power quality indices corresponding to the regulatory documents. The algorithm is used to calculate the apparent power of the active filter for the coal grading plant owned by the Vietnamese company “Cua Ong-Vinacomin."


2014 ◽  
Vol 533 ◽  
pp. 397-400 ◽  
Author(s):  
Chi Jui Wu ◽  
Yu Wei Liu ◽  
Shou Chien Huang

To modify the power factor and balance the three-phase currents simultaneously, this paper proposes the instantaneous compensator to calculate the compensation current. The instantaneous compensator utilizes two-dimensional instantaneous space vector and setting the active power as a constant for each cycle which can improve power quality effectively. Moreover, the instantaneous compensator requires an independent power source, whose capacity can be reduce by using a static var compensator (SVC). An SVC does not interfere with the capability of the instantaneous compensator. Field measurement data were analyzed. Simulation results confirmed the feasibility of correcting the power factor and balancing load currents simultaneously using the proposed method.


2018 ◽  
Vol 65 (3) ◽  
pp. 2608-2617 ◽  
Author(s):  
Silvia Costa Ferreira ◽  
Robson Bauwlez Gonzatti ◽  
Rondineli Rodrigues Pereira ◽  
Carlos Henrique da Silva ◽  
L. E. Borges da Silva ◽  
...  

2013 ◽  
Vol 397-400 ◽  
pp. 1113-1116
Author(s):  
Xiao Meng Wu ◽  
Wang Hao Fei ◽  
Xiao Mei Xiang ◽  
Wen Juan Wang

In order to solve the problem in reactive power compensation of oilfield distribution systems at present, a Taboo search algorithm is proposed in this paper, by which the optimal location and size of shunt capacitors on distribution systems are determined. Then the voltage profile is improved and the active power loss is reduced. In this paper, Voltage qualified is used as objective function to search an initial solution that meets the voltage constraints so that it is feasible in practicable voltage range; then the global optimum solution can be got when taking the reduced maximum of active power loss as objective unction. The examples show that the improved algorithm is feasible and effective.


2012 ◽  
Vol 468-471 ◽  
pp. 245-251
Author(s):  
Shou Ming Liu ◽  
Hong Wei Shi ◽  
Qian Zhang ◽  
Zhi Kun Hu

In this paper, the impuissance of traditional ip-iq method in reactive power compensation applications under nonideal mains voltages is illustrated first, and then a novel current reference calculation method for Shunt Active Power Filter (SAPF) based on p-q transformation is proposed. By means of the proposed method, the positive sequence fundamental active current component of the load current can be isolated under distorted and/or unbalanced mains voltages, which makes SAPF be capable of harmonic cancellation and reactive power compensation at the same time under nonideal mains voltages. The effectiveness of the new proposed method is mathematically studied and verified by computer simulation under ideal and nonideal mains voltages.


Sign in / Sign up

Export Citation Format

Share Document