Plastic Deformation Simulation on Compound Twist Extrusion Process for Metal Materials

2013 ◽  
Vol 291-294 ◽  
pp. 2676-2679 ◽  
Author(s):  
Yong Zhi Li ◽  
Xue Fei Du

Severe plastic deformation(SPD)methods have been the subject of intensive investigation for preparing bulk ultrafine-grained materials in recent years. This paper introduces a new severe plastic deformation (SPD) process named as C-TE process which combines the Twist Extrusion with Extrusion against the asymmetric deformation of TE process. and the distribution of effective strain and stress of the sample and the variation of load with time and its influence on the deformation were investigated by computer simulation with Deform-3D software . The results reveal that C-TE process can significantly slow uniform phenomenon,and a sample of homogeneous deformation can be obtained by the improved process.

Author(s):  
V. S. Senthil Kumar ◽  
U. Mohammed Iqbal

Twist extrusion is a severe plastic deformation in which the rectangular shaped work piece is extruded through a die with a twist channel. In this work the twist extrusion process of AA6082 T6 aluminum samples were carried out to investigate the effects of process parameters like temperature and deformation passes on the microstructure homogeneity. The results indicate that the grain refinement of AA 6082 T6 aluminum alloy leads to inhomogeneous microstructure after one twist extrusion pass. On further extrusion passes the inhomogeneity in the microstructure is found to be disappeared. The homogeneity of the distribution of the deformation was confirmed by micro hardness testing. Finite element modeling has been performed in DEFORM 3D software for determining the homogeneity of the effective strain distribution which agreed well with the experimental values.


Author(s):  
Violetta A. Andreyachshenko ◽  
Zhasulan A. Ashkeyev ◽  
Serikbol T. Abdiramanov

This article describes the results of a study that looked at the stress state and the specific force or contact pressure through the application of the slip line method and computer simulation (i.e. using the Deform 3D software package) when a workpiece was subjected to severe plastic deformation (SPD) in a special closed die. SPD is achieved when a flat punch is embedded in a round workpiece enclosed in the die and alternately compressed by a ring-shaped punch. Analysis of the results shows that compressive stresses prevail in the deformation zone resulting in the production of blanks with ultrafine-grained and/or nanostructure, as well as high mechanical properties. The relative discrepancy between the results obtained through the slip line method and those obtained through modelling in Deform 3D was about 1.3% indicating that the results can be considered reliable. It should be noted that this closed-die technique can be used to produce such products as gears, i.e. heavy-duty parts.


2012 ◽  
Vol 622-623 ◽  
pp. 705-709 ◽  
Author(s):  
U. Mohammed Iqbal ◽  
V.S. Senthil Kumar

Severe plastic deformation is one of the emerging and promising techniques applied to bulk materials to produce fine grain structure with attractive properties. This study aims to investigate the effect of extrusion parameters like extrusion temperature, number of passes on the equal channel angular pressing and twist extrusion forming behavior of AA7075-T6 Aluminum alloy by hot extrusion process. AA7075-T6 samples of 70x28x18 mm cross sections extruded by equal channel angular pressing and twist extrusion process was subjected to microstructure analysis, hardness and tensile tests in order to determine their mechanical properties. As a result of the experiments, it was determined that twist extrusion leads to more grain refinement at high temperatures with more number of passes compared to equal channel angular pressing. SEM micrographs show that there is severe orientation of the grains facilitated by the extrusion process which enhances the strength. The dense banding of the grains had effected in marginal hardness enhancement in the matrix of the specimens processed by twist extrusion and equal channel angular extrusion process.


2010 ◽  
Vol 146-147 ◽  
pp. 101-104 ◽  
Author(s):  
Yong Zhi Li ◽  
Xiao Bo Bai ◽  
Yu Min Xie ◽  
Ke Min Xie

Severe Plastic Deformation(SPD)methods are hot research techniques of preparation of bulk ultrafine-grained materials and strengthening the material properties currently .Among the various SPD methods, ECAPT that a new method of ECAP (Equal channel angular pressing) organic integrates with TE(Twist extrusion)was key introduced for the frist time ,and experimental study on ECAPT technology for deformation and densification of pure Al and Mo powder sintered materials were carried out and the results were compared with that of ECAP in this paper.The results show that there have more effective and more stronger severe plastic deformation during the process of ECAPT and it improves the ability of material’s plastic deformation and strengthens the material properties.In forming process of ECAPT after three passes,the grain size of powder sintering reduces the average 200%, and there has its nearly full density and comprehensive performance materials to improve overall performance significantly.It is confirmed that there have better comprehensive mechanical properties of strengthening materials and more stronger severe plastic deformation during the process of ECAPT contrast to the ECAP, too.


2011 ◽  
Vol 189-193 ◽  
pp. 1778-1781 ◽  
Author(s):  
Gui Hua Liu ◽  
Yong Qiang Guo ◽  
Zhi Jiang

By using Deform-3D software, the necking extrusion forming processes of integer trailer axle with two different heating means which are Uniform Heating (UH) method and Partly Heating (PH) method with temperature gradient are simulated. The influence of deformation parameters such as friction factor, necking coefficient, different temperature distribution of work-piece on the material flow features, stress and strain field, loading force and deformation process are analyzed in detail. According to the numerical simulation results, using PH method with temperature gradient can improve necking deformation during tube extrusion process.


2006 ◽  
Vol 114 ◽  
pp. 7-18 ◽  
Author(s):  
Ruslan Valiev

During the last decade severe plastic deformation (SPD) has become a widely known method of materials processing used for fabrication of ultrafine-grained materials with attractive properties. Nowadays SPD processing is rapidly developing and is on the verge of a transition from lab-scale research to commercial production. This paper focuses on several new trends in the development of SPD techniques for effective grain refinement, including those for commercial alloys and presents new SPD processing routes to produce bulk nanocrystalline materials.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1621-1626
Author(s):  
HYOUNG SEOP KIM

The technique of severe plastic deformation (SPD) enables one to produce metals and alloys with an ultrafine grain size of about 100 nm and less. As the mechanical properties of such ultrafine grained materials are governed by the plastic deformation during the SPD process, the understanding of the stress and strain development in a workpiece is very important for optimizing the SPD process design and for microstructural control. The objectives of this work is to present a constitutive model based on the dislocation density and dislocation cell evolution for large plastic strains as applied to equal channel angular pressing (ECAP). This paper briefly introduces the constitutive model and presents the results obtained with this model for ECAP by the finite element method.


Sign in / Sign up

Export Citation Format

Share Document