The Research for Uncertainty Heat Transfer Process of Phase Change Thermal Storage Based on Monte Carlo Method

2013 ◽  
Vol 291-294 ◽  
pp. 632-635
Author(s):  
Zhi Yong Li ◽  
Yu Qing Zhao ◽  
Xue Zou

Because of phase change materials (PCMs)’ composition, machining error, measuring error and other factors, the PCMs’ thermal physical properties, geometric properties, etc are usually uncertain. Phase change heat transfer process is an uncertainty heat transfer process. In this paper, it is considered factors’ uncertainty influencing phase change thermal storage heat transfer process. Heat transfer model of phase change thermal storage is established. And the uncertainty phase change heat transfer process is analysis based on Monte Carlo method. The experiment shows that the temperature of PCMs varied between the upper bound and lower bound of calculations. Comparison between simulation results of the model and experimental data implies that it is necessary to consider influencing factor’s uncertainty in phase change thermal storage heat transfer analysis.

2013 ◽  
Vol 838-841 ◽  
pp. 1939-1943
Author(s):  
Zhi Yong Li ◽  
Zheng Yong Wang ◽  
Qu Fan ◽  
Zhan Wu

Due to phase change materials (PCMs) composition, machining error, measuring error and other factors, the PCMs thermal physical properties, geometric properties, etc are usually uncertain. As a result, phase change heat transfer process is an uncertainty heat transfer process. But at present, heat transfer characteristics research on phase change thermal storage are all based on certainty heat transfer models (Taken uncertainty factors as certainty factors). In this paper, it is considered factors uncertainty influencing phase change thermal storage heat transfer process. By looked on the variation scope of influence factors as "interval number", based on interval mathematics, perturbation method and finite difference method, "interval number" heat transfer model of phase change thermal storage is established. In this model, the uncertainty variables are decomposed into the sum of the nominal value and the deviation value. PCM uncertainty temperature field can be determined by calculated nominal value and the deviation value of PCM temperature field separately. Comparison between simulation results of the model and experimental data implies that it is necessary to consider influencing factors uncertainty in phase change thermal storage heat transfer analysis.


Author(s):  
S. R. Darr ◽  
J. Dong ◽  
N. Glikin ◽  
J. W. Hartwig ◽  
J. N. Chung

In many convective liquid–vapor phase-change heat transfer engineering applications, cryogenic fluids are widely used in industrial processes, spacecraft and cryosurgery systems, and so on. For example, cryogens are usually used as liquid fuels such as liquid hydrogen, liquid methane, and liquid oxygen in the rocket industry, liquid nitrogen and helium are frequently used to cool superconducting magnetic device for medical applications. In these systems, proper transport, handling, and storage of cryogenic fluids are of extreme importance. Among all the cryogenic transport processes performed in room temperatures, quenching, also termed chilldown, is an unavoidable initial, transient phase-change heat transfer process that brings the system down to the cryogenic condition. The Leidenfrost temperature or rewet temperature that signals the end of film boiling is practically considered the completion point of a quenching process. Therefore, rewet temperature has been considered the most important parameter for the engineering design of cryogenic thermal management systems. As most of the previous correlations for predicting the Leidenfrost temperature and the rewet temperature have been developed for water, they are shown to disagree with recent liquid nitrogen pipe chilldown experiments in upward and downward flow directions over a wide range of flow rates, pressures, and degrees of inlet subcooling. In addition to a complete review of the literature, two modified correlations are presented, one based on bubble growth and another based on the theoretical maximum limit of superheat. Each correlation performs well over the entire dataset.


2011 ◽  
Vol 179-180 ◽  
pp. 239-242
Author(s):  
Hai Chuan Tian ◽  
Feng Xu ◽  
Guo Li Yang ◽  
Teng Fei Wu

The two-dimensional unsteady heat transfer model is been established. Analyzing on heat storage-release property of phase change thermal storage device within the fluid parallel spiral pipes in various conditions, suggestions are put forward to strengthen thermal storage for the device.


Sign in / Sign up

Export Citation Format

Share Document