QSAR Analyzes for the Predictive Toxicity of Substituted Phenols and Anilines to Fish (carp)

2013 ◽  
Vol 295-298 ◽  
pp. 109-112 ◽  
Author(s):  
Ping Sun ◽  
Shu Mei Gao ◽  
Hiu Liu ◽  
Jian Ting Chen

A quantitative structure-activity relationship (QSAR) study for predicting the acute toxicity 96h - LC50 values of substituted anilines and phenols to carp is presented in this work. For this, the descriptors were obtained with DFT method at the B3LYP/6-311G** level using the Gaussian 03 software package. Afterwards the obtained parameters were taken as theoretical descriptors to establish a QSAR model for predicting -lgLC50. The model contains two variables, energy of the highest occupied molecular orbital (EHOMO) and energy of the lowest unoccupied molecular orbital (ELUMO), which suggest that the main effect on biological toxicity of phenols and anilines is the interaction of electrons between the molecules of organic chemicals. Besides, the model was further validated by variance inflation factors (VIF) and t-test, and show fine stabilities and predictive abilities, which can be used to predict -lgLC50 of these kinds of compounds.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Omnia A. A. El-Shamy

The efficiency of 1,3-benzodioxole derivatives as corrosion inhibitors is theoretically studied using quantum chemical calculation and Quantitative Structure Activity Relationship (QSAR). Different semiempirical methods (AM1, PM3, MNDO, MINDO/3, and INDO) are applied in order to determine the relationship between molecular structure and their corrosion protection efficiencies. Different quantum parameters are obtained as the energy of highest occupied molecular orbitalEHOMO, the energy of the lowest unoccupied molecular orbitalELUMO, energy gapΔEg, dipole momentμ, and Mulliken charge on the atom. QSAR approach is applied to elucidate some important parameters as the hydrophobicity (Log P), surface area (S.A), polarization(P), and hydration energy (EHyd).


2012 ◽  
Vol 11 (05) ◽  
pp. 953-964 ◽  
Author(s):  
WEI ZHANG ◽  
SHU-YAO YAN ◽  
ZENG-XIA ZHAO ◽  
HONG-XING ZHANG

A global search on the lowest-energy structures of the medium-sized silver clusters Ag n(n = 21–34) was performed by using a genetic algorithm (GA) coupled with a tight-binding (TB) method. Structures, binding energies per atom, second differences in energies, the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO–LUMO), and fragmentation behaviors of Ag n(n = 21–34) are investigated by using DFT method. The calculated results show that the neutral silver clusters prefer to decay by evaporation of a monomer except a small sized silver cluster ( Ag 4), which favors a dimmer evaporation. For the collision induced dissociation of cationic silver clusters, decaying a silver atom is found to be the dominant fragmentation channel. But for some small sized cationic silver clusters, a neutral dimmer evaporation is found to be energetically favorable. Our calculated results are consistent with previous studies.


Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Krishna N. Reddy ◽  
Martin A. Locke

Relationships between soil sorption normalized to organic carbon (Koc) and molecular properties of 71 herbicides were examined. The Koc values were obtained from the literature. Various molecular properties were calculated by quantum mechanical methods using molecular modeling software. The quantitative structure activity relationship (QSAR) models based on four molecular properties, van der Waals volume (VDWv), molecular polarizability (α), dipole moment (μ), and energy of highest occupied molecular orbital (eHOMO), together accounted for 70% of the variation in Koc. Herbicides were broadly divided into six families based on structural similarities, and separate equations were established for each group. The three descriptors, VDWv, α, and μ, along with either energy of lowest unoccupied molecular orbital (eLUMO), or electrophilic superdelocalizability (SE), or eHOMO appeared to be determinants and accounted for 82 to 99% of the variation in Koc. Applicability of these models was tested for one herbicide analogue and 10 metabolites. The QSAR models appear to be specific to structurally similar chemicals. The QSAR models could be developed to predict Koc of structurally similar compounds even before they are synthesized or for some of the metabolites of existing herbicides. Models of this type can also be developed to create priority lists for testing, so that time, money, and efforts can be focused on the potentially most hazardous chemicals.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1157
Author(s):  
Songsong Wang ◽  
Changliang Han ◽  
Liuqi Ye ◽  
Guiling Zhang ◽  
Yangyang Hu ◽  
...  

The electronic structures and transition properties of three types of triangle MoS2 clusters, A (Mo edge passivated with two S atoms), B (Mo edge passivated with one S atom), and C (S edge) have been explored using quantum chemistry methods. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap of B and C is larger than that of A, due to the absence of the dangling of edge S atoms. The frontier orbitals (FMOs) of A can be divided into two categories, edge states from S3p at the edge and hybrid states of Mo4d and S3p covering the whole cluster. Due to edge/corner states appearing in the FMOs of triangle MoS2 clusters, their absorption spectra show unique characteristics along with the edge structure and size.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
V. V. Malov ◽  
A. R. Tameev ◽  
S. V. Novikov ◽  
M. V. Khenkin ◽  
A. G. Kazanskii ◽  
...  

AbstractOptical and photoelectric properties of modern photosensitive polymers are of great interest due to their prospects for photovoltaic applications. In particular, an investigation of absorption and photoconductivity edge of these materials could provide valuable information. For these purpose we applied the constant photocurrent method which has proved its efficiency for inorganic materials. PCDTBT and PTB7 polymers were used as objects for the study as well as their blends with a fullerene derivative PC71BM. The measurements by constant photocurrent method (CPM) show that formation of bulk heterojunction (BHJ) in the blends increases photoconductivity and results in a redshift of the photocurrent edge in the doped polymers compared with that in the neat polymers. Obtained from CPM data, spectral dependences of absorption coefficient were approximated using Gaussian distribution of density-of-states within HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) bands. The approximation procedure allowed us to evaluate rather optical than electrical bandgaps for the studied materials. Moreover, spectra of polymer:PC71BM blends were fitted well by the sum of two Gaussian peaks which reveal both the transitions within the polymer and the transitions involving charge transfer states at the donor-acceptor interface in the BHJ.


Cerâmica ◽  
2003 ◽  
Vol 49 (309) ◽  
pp. 36-39 ◽  
Author(s):  
C. D. Pinheiro ◽  
V. Bouquet ◽  
F. M. Pontes ◽  
E. R. Leite ◽  
E. Longo

Realizou-se um estudo teórico-experimental sobre as estruturas cristalina e amorfa de niobato de lítio, para verificar a influência dos defeitos sobre as propriedades ópticas desse semicondutor. Filmes finos cristalinos de LiNbO3 (c-LN) e amorfo (a-LN) foram preparados pelo método dos precursores poliméricos, sendo caracterizados por difração de raios X e microscopia de força atômica. As propriedades ópticas foram estudadas por UV-Visível e espectroscopia Raman. Em particular, o filme amorfo apresentou luminescência, cuja posição do pico varia de acordo com o comprimento de onda de excitação. A diferença de energia entre os níveis HOMO (Highest Occupied Molecular Orbital) e LUMO (Lowest Unoccupied Molecular Orbital) revela que o gap de banda da fase cristalina é maior que aquele exibido pela fase amorfa, em acordo com os dados experimentais de UV-visível. Observou-se o surgimento de novos níveis eletrônicos na região do gap de banda na estrutura amorfa, este fato pode explicar as propriedades ópticas particulares observadas sobre o filme amorfo.


2007 ◽  
Vol 61 (3) ◽  
Author(s):  
İ. Kaya ◽  
S. Çulhaoğlu ◽  
D. Şenol

AbstractThe oxidative polycondensation of 4-[(pyridin-3-ylimino)methyl]phenol (4-PIMP) with O2, H2O2, and NaOCl was studied in an aqueous alkaline medium between 50°C and 90°C. Oligo-4-[(pyridin-3-ylimino)methyl]phenol (O-4-PIMP) prepared was characterized by 1H-NMR, 13C-NMR, FT-IR, UV-VIS, size-exclusion chromatography, and elemental and thermal analyses techniques. At the optimum reaction conditions, the yield of O-4-PIMP was 18.9%, 39.4%, and 46.8% using H2O2, O2, and NaOCl oxidant, respectively. According to the TG analysis, the initial degradation temperature of O-4-PIMP was 218°C, which was by 50°C higher than that of 4-PIMP. Thermal analyses of 4-PIMP and O-4-PIMP were carried out in N2 atmosphere at 15–1000°C. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and electrochemical energy gaps of 4-PIMP and O-4-PIMP were determined from the onset potentials for n-doping and p-doping, respectively. Also, optical band gaps of 4-PIMP and O-4-PIMP were determined according to UV-VIS measurements.


2015 ◽  
Vol 80 (8) ◽  
pp. 997-1008 ◽  
Author(s):  
Maryam Dehestani ◽  
Leila Zeidabadinejad

Topological analyses of the electron density using the quantum theory of atoms in molecules (QTAIM) have been carried out at the B3PW91/6-31g (d) theoretical level, on bis(pyrazol-1-yl)methanes derivatives 9-(4-(di (1H-pyrazol-1-yl)-methyl)phenyl)-9H-carbazole (L) and its zinc(II) complexes: ZnLCl2 (1), ZnLBr2 (2) and ZnLI2 (3). The topological parameters derived from Bader theory were also analyzed; these are characteristics of Zn-bond critical points and also of ring critical points. The calculated structural parameters are the frontier molecular orbital energies highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), hardness (?), softness (S), the absolute electronegativity (?), the electrophilicity index (?) and the fractions of electrons transferred (?N) from ZnLX2 complexes to L. The numerous correlations and dependencies between energy terms of the Symmetry Adapted Perturbation Theory approach (SAPT), geometrical, topological and energetic parameters were detected and described.


Author(s):  
Minas M. Stylianakis ◽  
Dimitriοs M. Kosmidis ◽  
Katerina Anagnostou ◽  
Christos Polyzoidis ◽  
Miron Krassas ◽  
...  

A novel solution-processed graphene-based material was synthesized by treating graphene oxide (GO) with 2,5,7-trinitro-9-oxo-fluorenone-4-carboxylic acid (TNF-COOH) moieties, via simple synthetic routes. The yielded molecule N-[(carbamoyl-GO)ethyl]-N’-[(carbamoyl)-(2,5,7-trinitro-9-oxo-fluorene)] (GO-TNF) was thoroughly characterized and it was shown that it presents favorable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels to function as a bridge component between the polymeric donor poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) (PTB7) and the fullerene derivative acceptor [6,6]-phenyl-C71-butyric-acid-methylester (PC71BM). In this context, a GO-TNF based ink was prepared and directly incorporated within the binary photoactive layer, in different volume ratios (1-3% ratio to the blend), for the effective realization of inverted ternary organic solar cells (OSCs) of the structure ITO/PFN/PTB7:GO-TNF:PC71BM/MoO3/Al. The addition of 2% v/v GO-TNF ink led to a champion power conversion efficiency (PCE) of 8.71% that was enhanced by ~13% as compared to the reference cell.


Density Functional Theoretical (DFT) studies on the biologically active oxime ether derived from 1,3-dimethyl-2,6-diphenylpiperidin-4-one has been carried out. Various quantum chemical parameters of the molecule viz. molecular geometry, Highest Occupied Molecular Orbital – Lowest Unoccupied Molecular Orbital (HOMO–LUMO) energies, Non-Linear Optical (NLO) properties, Mulliken atomic charge distribution were obtained theoretically and compared with the single crystal data. An insight into the structure and property correlation revealed the probable behavior of the molecule studied


Sign in / Sign up

Export Citation Format

Share Document