Effect of Various Structures on the Efficiency of Organic Solar Cells

2013 ◽  
Vol 311 ◽  
pp. 419-423
Author(s):  
Kan Lin Chen ◽  
D.W. Chou ◽  
Chien Jung Huang ◽  
Jhong Ciao Ke ◽  
Wen Ray Chen ◽  
...  

Small molecule organic solar cell with an optimized structure of indium tin oxide (ITO)/copper phthalocyanine (CuPc) (10nm)/CuPc: C60mixed (20nm)/fullerene (C60) (20nm)/bathocuproine (BCP) (10nm)/Al) was fabricated. With optimizing the hybrid planar-mixed molecular heterojunction (PM-HJ) from the double layer heterojunction (HJ) and the bulk heterojunction (BHJ), the short-circuit current density (Jsc) increased from 3.09 to 5.11mA/cm2, the open-circuit voltage (Voc) increased from 0.40 to 0.47V, and the power conversion efficiency (ηp) increased from 0.66 to 1.28% under 100mW/cm2 AM1.5G illumination. These improvements were attributed to reach the optimal balance among the light absorption efficiency, the exciton dissociation efficiency and the carrier collection efficiency of the device, resulting in enhancement of Jscwithout affecting the value of fill factor (FF) and the reduction of the dark current. Furthermore a decrease of dark current is caused to the higher Voc.

2021 ◽  
Author(s):  
Li-Jia Chen ◽  
Guo-Xi Niu ◽  
Lian-Bin Niu ◽  
Qun-Liang Song

Abstract Tandem cell with structure of indium tin oxide (ITO)/ molybdenum oxide (MoO3)/ fullerene (C60) / copper phthalocyanine (CuPc)/ C60 / tris-8-hydroxy- quinolinato aluminum (Alq3)/Al was fabricated to study the effect of net carriers at the interconnection layer. The open circuit voltage and short circuit current were found to be 1.15 V and 0.56 mA/cm2, respectively. Almost the same performance (1.05 V, 0.58 mA/cm2) of tandem cell with additional recombination layer (ITO/MoO3/C60/Alq3/Al/Ag/MoO3/CuPc/C60/Alq3/Al) demonstrates that carrier balance is more crucial than carrier recombination. The net holes at the interconnection layer caused by more carrier generation from the back cell on one hand would enhance the recombination with electrons from the front cell and on the other hand would quench the excitons produced in CuPc of the back cell.


2009 ◽  
Vol 1212 ◽  
Author(s):  
Dewei Zhao ◽  
Xiao Wei Sun ◽  
Lin Ke ◽  
Swee Tiam Tan

AbstractWe present an efficient polymer-small molecule triple-tandem organic solar cell (OSC), consisting of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) bulk heterojunction as the first and second cells, and small molecules copper phthalocyanine (CuPc) and fullerene (C60) as the third cell on top. These sub-cells are connected by an intermediate layer of Al(1 nm)/MoO3(15 nm), which appears to be highly transparent, structurally smooth, and electrically functional. Compared to our previous all polymer triple-tandem organic solar cells (2.03%), this polymer-small molecule triple-tandem organic solar cell achieves an improved power conversion efficiency of 2.18% with a short-circuit current density (Jsc) = 3.02 mA/cm2, open-circuit voltage (Voc) = 1.51 V, and fill factor (FF) = 47.7% under simulated solar irradiation of 100 mW/cm2 (AM1.5G), which can be attributed to the increased photocurrent generation in the third cell since the third cell has the complementary absorption with two bottom cells despite a slightly reduced Voc.


Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


2011 ◽  
Vol 1359 ◽  
Author(s):  
A.J. Trindade ◽  
M.G. Santos ◽  
J. Gomes ◽  
L. Pereira

ABSTRACTThis work shows the relationship between the morphology (studied by AFM) of an active bulk-heterojunction (BHJ) layer composed by MEH-PPV (poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) and the respective photovoltaic figures of merit. It is observed that the most relevant parameter (influencing the efficiency) is the fill-factor (FF), as both the open circuit voltage and short circuit current are not significantly affected by the microscopic morphology. Different local conformation of the active films can change the FF from near 25% to more than 65%, having a strong impact in the efficiency. These results were modulated by an equivalent circuit. Serial and parallel resistances were related with the physical behavior of the organic cells. These were observed to have a direct relationship with the achieved morphology.


2012 ◽  
Vol 1390 ◽  
Author(s):  
M. Alam ◽  
B. Ray ◽  
M. Khan ◽  
S. Dongaonkar

Abstract:Since its introduction in early 1990s, bulk-heterojunction organic photovoltaic solar cell (BHJ-OPV) has promised high-efficiency at ultra-low cost and weight, with potential for non-traditional applications such as building-integrated PV. There is a widespread presumption, however, that the complexity of morphology makes carrier transport in OPV irreducibly complicated, and possibly, beyond predictive modeling. In this paper, we use elementary and intuitive arguments to derive the fundamental thermodynamic as well as morphology-specific practical limits of BHJ-OPV efficiency. We find that constraints of the percolation threshold and trade-off among short-circuit current, open circuit voltage, and fill factor make substantial improvement in OPV efficiency difficult. We posit that future improvement in OPV will rely not on morphology engineering, or reducing the polymer bandgap, but on increasing both the effective μ × τ product and the cross-gap between donor/acceptors. Even if the OPV fails to achieve the highest efficiency anticipated by the thermodynamic limit, its novel form factor, lightweight, and transparency can make it a commercially viable option for many applications.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Ryosuke Motoyoshi ◽  
Takeo Oku ◽  
Atsushi Suzuki ◽  
Kenji Kikuchi ◽  
Shiomi Kikuchi ◽  
...  

Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS-) based solar cells with titanium dioxide (TiO2) were produced on F-dopedSnO2(FTO). A device based on an FTO/CIS/TiO2structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO-) and cuprous oxide- (Cu2O-) based solar cells with fullerene (C60) were also fabricated on FTO and indium tin oxide (ITO). The microstructure and cell performance of the CuO/C60heterojunction and theCu2O:C60bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60and ITO/Cu2O:C60structures provided short-circuit current density of 0.015 mAcm−2and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.


2020 ◽  
Vol 89 (3) ◽  
pp. 30201 ◽  
Author(s):  
Xi Guan ◽  
Shiyu Wang ◽  
Wenxing Liu ◽  
Dashan Qin ◽  
Dayan Ban

Organic solar cells based on planar copper phthalocyanine (CuPc)/C60 heterojunction have been characterized, in which a 2 nm-thick layer of bathocuproine (BCP) is inserted into the CuPc layer. The thin layer of BCP allows hole current to tunnel it through but blocks the exciton diffusion, thereby altering the steady-state exciton profile in the CuPc zone (zone 1) sandwiched between BCP and C60. The short-circuit current density (JSC) of device is limited by the hole-exciton scattering effect at the BCP/CuPc (zone 1) interface. Based on the variation of JSC with the width of zone 1, the exciton diffusion length of CuPc is deduced to be 12.5–15 nm. The current research provides an easy and helpful method to determine the exciton diffusion lengths of organic electron donors.


2012 ◽  
Vol 550-553 ◽  
pp. 476-479
Author(s):  
Ai Fen Wang

The three photovoltaic cells with two different anode buffer layer on the basis of Pentacene/C60 as active layer was fabicated, the effect and mechanism of anode buffer layer on performance of organic photovoltaic cell are explored. The experimental result shows transition metal oxide inserted between organic active layer and ITO could increase short circuit current and open-circuit voltage,power conversion efficiency is increased to 107%,so it is effective anode buffer material.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 450 ◽  
Author(s):  
Miron Krassas ◽  
Christos Polyzoidis ◽  
Pavlos Tzourmpakis ◽  
Dimitriοs M. Kosmidis ◽  
George Viskadouros ◽  
...  

A conjugated, ladder-type multi-fused ring 4,7-dithienbenzothiadiazole:thiophene derivative, named as compound ‘T’, was for the first time incorporated, within the PTB7:PC71BM photoactive layer for inverted ternary organic solar cells (TOSCs) realization. The effective energy level offset caused by compound T between the polymeric donor and fullerene acceptor materials, as well as its resulting potential as electron cascade material contribute to an enhanced exciton dissociation, electron transfer facilitator and thus improved overall photovoltaic performance. The engineering optimization of the inverted TOSC, ITO/PFN/PTB7:Compound T(5% v/v):PC71BM/MoO3/Al, resulted in an overall power conversion efficiency (PCE) of 8.34%, with a short-circuit current density (Jsc) of 16.75 mA cm−2, open-circuit voltage (Voc) of 0.74 V and a fill factor (FF) of 68.1%, under AM1.5G illumination. This photovoltaic performance was improved by approximately 12% with respect to the control binary device.


2014 ◽  
Vol 783-786 ◽  
pp. 2002-2004 ◽  
Author(s):  
Tomohiro Nozaki ◽  
Yi Ding ◽  
Ryan Gresback

Silicon nanocrystals (SiNCs) have unique optical and electronic properties that are advantageous for semiconductor device applications and here their application to solar cell is presented. Free-standing, narrow size distribution SiNCs were synthesized by non-thermal plasma using silicon tetrachloride (SiCl4) successfully. Blended solution of as-produced SiNCs and P3HT, or Poly(3-hexylthiophene-2,5-diyl), was spin-casted to form bulk heterojunction solar cell devices. As the weight fraction of SiNCs increased up to 50 wt%, the short circuit current and the power conversion efficiency dramatically increased, while the open circuit voltage and the fill factor do not change significantly. The improved performance is attributable to increased probability of exciton dissociation at acceptor SiNCs and donor P3HT interface.


Sign in / Sign up

Export Citation Format

Share Document