Dependence of Thermodynamic and Optical Properties on Glass Compositions in Low-Phonon Energy Heavy-Metal Gallate Glass System

2013 ◽  
Vol 319 ◽  
pp. 49-53
Author(s):  
Xiao Zhe Han ◽  
Fei Wang ◽  
Xin Zhao ◽  
Tie Cheng Ma ◽  
Zhi Qiang Wang ◽  
...  

Dependence of thermodynamic and optical properties on glass compositions in low-phonon energy heavy-metal gallate (MHG) glass system has been investigated. With the increase of Ga2O3and the decrease of Bi2O3, temperature difference value (DT) of Ho3+-doped MHG glasses is increased from 68 °C to 98 °C, in the meantime, thermal stability parameter (H) is enhanced from 0.224 to 0.263, and Saad-Poulain criterion (S) is heightened from 5.59 °C to 13.17 °C. The increments of thermal parameters indicate that the thermal stability against crystallization can be improved for potential optical fiber drawing. The blue shift of cut-off wavelength is confirmed due to the adjustment of glass compositions, which broadens the visible transmittance window, indicating that more options of blue and green excitation light sources make MHG glasses promising candidates for developing functional optoelectronic devices.

2021 ◽  
Vol 11 (10) ◽  
pp. 4603
Author(s):  
Soyoung Kim ◽  
Karam Han ◽  
Seonhoon Kim ◽  
Linganna Kadathala ◽  
Jinhyeok Kim ◽  
...  

Today, the most common way of laser sealing is using a glass frit paste and screen printer. Laser sealing using glass frit paste has some problems, such as pores, nonuniform height, imperfect hermetic sealing, etc. In order to overcome these problems, sealing using fiber types of sealant is attractive for packaging devices. In this work, (70-x)V2O5-5ZnO-22BaO-3B2O3-xM(PO3)n glasses (mol%) incorporated with xM(PO3)n concentration (where M = Mg, Al, n = 2, 3, respectively) were fabricated and their thermal, thermomechanical, and structural properties were investigated. Most importantly, for this type of sealing, the glass should have a thermal stability (ΔT) of ≥80 °C and the coefficient of thermal expansion (CTE) between the glass and panel should be 1.0 ppm/°C. The highest thermal stability ΔT of the order of 93.2 °C and 112.9 °C was obtained for the 15 mol% of Mg(PO3)2 and Al(PO3)3 doped glasses, respectively. This reveals that the bond strength and connectivity is more strongly improved by trivalent Al(PO3)3. The CTE of a (70-x)V2O5-5ZnO-22BaO-3B2O3-xAl(PO3)3 glass system (mol%) (where x = 5–15, mol%) is in the range of 9.5–15.5 (×10−6/K), which is comparable with the CTE (9–10 (×10−6/K)) of commercial DSSC glass panels. Based on the results, the studied glass systems are considered to be suitable for laser sealing using fiber types of sealant.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali A. Alhazime ◽  
Nesreen T. El-Shamy ◽  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

AbstractNanocomposite films of polymethylmethacrylate PMMA with Sn0.75Fe0.25S2 nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Changes in PMMA/Sn0.75Fe0.25S2 nanocomposite (NCP) due to gamma irradiation have been measured. XRD results indicate that the gamma doses of 10–80 kGy cause intermolecular crosslinking that reduces the ordered portion in the NPs. Bonding between the NPs and the host PMMA was confirmed by FTIR. TGA results indicate an enhancement in thermal stability in the NCP films irradiated with doses 20–80 kGy. The optical band gap was reduced from 3.23 to 2.47 eV upon gamma irradiation up to 80 kGy due bonding between the NPs and PMMA which enhanced the amorphous part of the NPs. Finally, the color variation between the blank and irradiated films (ΔE) was determined. Color changes immensely when the PMMA/Sn0.75Fe0.25S2 NCP films are gamma irradiated. Values of ΔE were as much as 31.6 which is an acceptable match in commercial reproduction on printing presses.


Author(s):  
Sunil Jat ◽  
Ratnesh K. Sharma ◽  
S.K. Mahajan ◽  
Mohammad Ashiq ◽  
Ghizal F. Ansari

2019 ◽  
Vol 111 ◽  
pp. 04046
Author(s):  
Răzvan Bucureşteanu ◽  
Roxana Apetrei ◽  
Monica Ioniţă ◽  
Ludmila-Otilia Cinteză ◽  
Lia-Mara Diţu ◽  
...  

An ever-increasing rate of morbidity and mortality caused by healthcare associated infections is reported annually. Air circulation mediates contact with microbial contaminated aerosols and represents a major risk of transmitting healthcare associated infections. We propose a revolutionary technique for the protection of interior surfaces based on a photocatalytic composition with doped TiO2 or ZnO type semiconductor metal oxides which exert antimicrobial effect. In principle, there is an activation of the photocatalytic coating with light from the normal lighting apparatus, which may incorporate one or more sources of photocatalytic excitation light. By studying the air circulation in the hospital, it is possible to design light fixtures with specific design of light distribution, in order to perform the disinfection of the air and surfaces and to amplify the antimicrobial effect. The disinfection process does not affect patients or healthcare professionals, it can be done in their presence and has a continuous, controllable effect. Photocatalytic paint in combination with a prototype luminaire with a precise spectrum light sources, light output and a light intensity distribution curve relative to the shape and dimensions of the rooms, shows that the proposed method may represent a successful alternative to classical methods of disinfection in hospitals. This technique can also be used in other areas of interest.


2019 ◽  
Vol 6 (8) ◽  
pp. 085204 ◽  
Author(s):  
Eleanor Olegario ◽  
Christian Mark Pelicano ◽  
Jenichi Clairvaux Felizco ◽  
Herman Mendoza

Sign in / Sign up

Export Citation Format

Share Document