Effect of gamma radiation on the structural, thermal and optical properties of PMMA/Sn0.75Fe0.25S2 nanocomposite

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali A. Alhazime ◽  
Nesreen T. El-Shamy ◽  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

AbstractNanocomposite films of polymethylmethacrylate PMMA with Sn0.75Fe0.25S2 nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Changes in PMMA/Sn0.75Fe0.25S2 nanocomposite (NCP) due to gamma irradiation have been measured. XRD results indicate that the gamma doses of 10–80 kGy cause intermolecular crosslinking that reduces the ordered portion in the NPs. Bonding between the NPs and the host PMMA was confirmed by FTIR. TGA results indicate an enhancement in thermal stability in the NCP films irradiated with doses 20–80 kGy. The optical band gap was reduced from 3.23 to 2.47 eV upon gamma irradiation up to 80 kGy due bonding between the NPs and PMMA which enhanced the amorphous part of the NPs. Finally, the color variation between the blank and irradiated films (ΔE) was determined. Color changes immensely when the PMMA/Sn0.75Fe0.25S2 NCP films are gamma irradiated. Values of ΔE were as much as 31.6 which is an acceptable match in commercial reproduction on printing presses.

2021 ◽  
Vol 127 (10) ◽  
Author(s):  
M. I. A. Abdel Maksoud ◽  
Soraya Abdelhaleem ◽  
Eman K. Tawfik ◽  
Ahmed G. Bedir ◽  
Asmaa S. Morshedy

2018 ◽  
Vol 14 (2) ◽  
pp. 5624-5637
Author(s):  
A.A. Attia ◽  
M.M. Saadeldin ◽  
K. Sawaby

Para-quaterphenyl thin films were deposited onto glass and quartz substrates by thermal evaporation method. p-quaterphenyl thin films wereexposed to gamma radiation of Cobat-60 radioactive source at room temperature with a dose of 50 kGy to study the effect of ?-irradiation onthe structure and the surface morphology as well as the optical properties of the prepared films. The crystalline structure and the surface morphology of the as-deposited and ?-irradiated films were examined using the X-ray diffraction and the field emission scanning electron microscope. The optical constants (n & k) of the as-deposited and ?-irradiated films were obtained using the transmittance and reflectance measurements, in the wavelength range starting from 250 up to 2500 nm. The analysis of the absorption coefficient data revealed an allowed direct transition with optical band gap of 2.2 eV for the as-deposited films, which decreased to 2.06 eV after exposing film to gamma irradiation. It was observed that the Urbach energy values change inversely with the values of the optical band gap. The dispersion of the refractive index was interpreted using the single oscillator model. The nonlinear absorption coefficient spectra for the as-deposited and ?-irradiated p-quaterphenyl thin films were obtained using the linear refractive index.


2021 ◽  
Vol 1021 ◽  
pp. 107-114
Author(s):  
Buthainah A. Ibrahim ◽  
Ziad T. Khodiar ◽  
Marwan M. Farhan

Cobalt oxide thin film (Co3O4) has been prepared from cobalt chloride with distilled water on conducting glass substrates Fluorine doped Tin Oxide (FTO) at (400ºC) by depositing chemical spray pyrolysis, with thickness (200 nm). The structural properties are studied by XRD. Also, optical properties and electrical properties of Co3O4 thin film are studied by UV spectroscopy and Cyclic voltammetry (CV) respectively. The effects of gamma irradiation on optical properties are also examined. XRD results showed that the film was polycrystalline with cubic structure having preferred orientation (111). The as-prepared Co3O4 film exhibits a noticeable EC behaviour with reversible colour which changes from dark grey to pale yellow with bleaching time (55 s) and colouring time (40 s). After irradiation, the optical properties showed that as the transmittance decrease leads to decrease the direct optical band gap from (3.68eV) to (3.55eV)


2022 ◽  
Author(s):  
Amina Omar ◽  
Rania Badry ◽  
Maroof A. Hegazy ◽  
Ibrahim S. Yahia ◽  
Hanan Elhaes ◽  
...  

Abstract The solution casting method was utilized to synthesize nanocomposite films of chitosan (Cs)/CuO, Cs/graphene oxide (GO), carboxymethyl cellulose (CMC)/TiO2, CMC/GO, sodium alginate (Na Alg)/TiO2, and Na-Alg/GO owing to their various applications. The influence of CuO, TiO2 and GO concentration on the optical properties of Cs, CMC and Na-Alg films was studied by UV-Vis Spectroscopy. The absorbance of Cs, CMC and Na-Alg increased with increasing the filler content, thus reflecting the dependence of Cs, CMC, and Na-Alg properties on the nanofiller content, and confirming the interactions between individual polymers and CuO, TiO2 and GO nanoparticles. The obtained absorbance values were then used to calculate the absorption coefficient and, hence, the optical band gap values. The characteristic absorption bands of CuO and TiO2 underwent a redshift by increasing the filler content. The results showed that the optical band gap of Cs, CMC, and Na-Alg decreased with filler content, and they possessed 1, 2 and 2 band gaps respectively. The obtained results recommended that Cs, CMC, and Na-Alg nanocomposites can be used in optoelectronic devices.


2013 ◽  
Vol 30 (5) ◽  
pp. 057803 ◽  
Author(s):  
Alireza Kharazmi ◽  
Elias Saion ◽  
Nastaran Faraji ◽  
Nayereh Soltani ◽  
Arash Dehzangi

2010 ◽  
Vol 39 (12) ◽  
pp. 1826-1831 ◽  
Author(s):  
Ji-Eun Jo ◽  
Hong-Sun Yook ◽  
Kyoung-Hee Kim ◽  
Jong-Yeon Baek ◽  
Young-Ja Moon ◽  
...  

Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


Sign in / Sign up

Export Citation Format

Share Document