Analysis of the Milling Distortion due to Residual Stress Based on Analytical Method

2010 ◽  
Vol 33 ◽  
pp. 88-91
Author(s):  
Yuan Wei Liu

Formulae of stress re-distribution and distortion by stress releasing during milling process are deduced by elasticity theory. Theory prediction of milling deformation due to residual stress is finished, and some calculating equation is given for the deformation solution. By means of these researches, the mechanism of the milling deformation due to residual stress is analyzed, the machining distortion caused by residual stress are analyzed and summarized using the analytical method.

2011 ◽  
Vol 381 ◽  
pp. 44-47
Author(s):  
Hun Guo ◽  
Dun Wen Zuo ◽  
Guo Xing Tang ◽  
W.M. Gan

Formulae of stress re-distribution and distortion by stress releasing during milling process are deduced to Initial Residual Stresses. Theory prediction of milling deformation due to residual stress is finished, and some calculating equation is given for the deformation solution. By means of these researches, the mechanism of the milling deformation due to residual stress is analyzed, the machining distortion caused by residual stress are analyzed and summarized using the analytical method.


2021 ◽  
Vol 725 ◽  
pp. 138635
Author(s):  
Quentin Hatte ◽  
Mireille Richard-Plouet ◽  
Pierre-Yves Jouan ◽  
Pascal Casari ◽  
Pierre-Antoine Dubos

2016 ◽  
Vol 693 ◽  
pp. 900-905
Author(s):  
W.W. Song ◽  
J.L. Wang ◽  
H.F. Wang ◽  
Dun Wen Zuo

In this paper, the effect of the cutting heat on the workpiece in the processing was studied. Its essence is to study relationship between the workpiece temperature variation and internal residual stress distribution. In the specific problem-solving process, the metal cutting theory, finite element related knowledge and metal elastoplastic deformation theory were combined, and established a mathematical model which was suitable for the model of the milling temperature and residual stress in the milling process. It would provide theoretical support for future study on milling deformation mechanism.


2013 ◽  
Vol 278-280 ◽  
pp. 385-388 ◽  
Author(s):  
Shao Gang Liu ◽  
Qiu Jin

This paper presents a analytical method to calculate the minimum clamping force to prevent slippage between the workpiece and spherical-tipped fixture elements during milling process. After the contact deformation between the workpiece and spherical-tipped fixture element is determined, the relationships between the workpiece displacement and the contact deformations are obtained. Based on the static equilibrium equations, these equations are combined and linear equations are obtained to calculate the tangential contact forces between the workpiece and spherical-tipped fixture element. According to the maximum tangential contact force, the minimum clamping force to prevent slippage between the workpiece and spherical-tipped fixture elements is calculated. At last, this method is illustrated with a simulation example.


2018 ◽  
Vol 764 ◽  
pp. 49-57
Author(s):  
Hun Guo ◽  
Dun Wen Zuo ◽  
Fei Hong Yin ◽  
Ya Feng He ◽  
Ji Xu ◽  
...  

It is one of the difficult problems in the manufacture of the integrated aircraft part of Machining distortion caused by residual stress. According to the characteristics of aluminum alloy pre stretched thick plate, the modified removal method for measuring residual stress in thick pre-stretched aluminum plates is proposed and the stress-strain relation matrix is deduced by elasticity theory. Moreover, the residual stresses in the specimen of 7075T7351 plate is measured by the proposed method, and the results are finally analyzed and compared with the data obtained by other methods. The results indicate that the proposed method is effective in measuring the residual stress in thick pre-stretched aluminum alloy plates. The measurement results can be used for the quantitative analysis of aerospace parts machining distortion caused by residual stress, and it has higher value in engineering application.


Author(s):  
B. Zheng ◽  
H. D. Yu ◽  
X. Wang ◽  
X. M. Lai

Surface scratches and residual stresses inevitably appear on the surface of the component as a result of the machining process. The damage evolution of surface scratch due to the combined effect of cyclic loading and residual stresses will be significantly different from the case where only the cyclic loading is considered. In the damage evolution of surface scratch, the short crack growth is of great importance owing to its apparently anomalous behaviors compared with the long-crack growth. In this paper, the effect of the surface roughness and the residual stress on the short crack growth is studied. Firstly, the surface roughness and the residual stress of 7075-T6 aluminum alloy induced by the high speed milling process with various cutting speeds and feed rates are investigated with the experimental method. The maximum height roughness parameter is measured, which is regarded as the surface defect induced by the milling process. The residual stress on the specimen surface is measured with the X-ray diffraction. Results show that the surface roughness becomes higher with the increase of the feed rate. However, the influence of the cutting speed on the surface roughness is not significant. The residual stresses on the specimen surface are all in the compressive state. The residual stress is more compressive as the feed rate increases. The effects of the process parameters on the surface roughness and the residual stress are described by the fitted formulas. Then a modified model is built to characterize short fatigue crack growth behaviors with the consideration of the residual stress. This model is proved to provide a realistic treatment of the short crack growth, as reflected by comparison with experimental fatigue crack growth data of medium carbon steel and 7075-T6 aluminum alloy published in literature. The effect of surface roughness and residual stress caused by the milling process on the short crack growth is also investigated by using the proposed model. The growth of the scratch is nonlinear when it is subjected to the cyclic load. The compressive residual stress reduces the growth rate of the crack. The crack with larger initial surface roughness grows faster than that with smaller roughness. The correlation of surface roughness, residual stress and crack growth length is obtained by the polynomial fitting. The investigations in this paper can help the damage tolerance design of structures and improve the awareness of the effect of the residual stress and surface roughness induced by the machining process on the short crack growth.


Sign in / Sign up

Export Citation Format

Share Document