Effect of Surface Roughness and Residual Stress Induced by High Speed Milling Process on Short Crack Growth

Author(s):  
B. Zheng ◽  
H. D. Yu ◽  
X. Wang ◽  
X. M. Lai

Surface scratches and residual stresses inevitably appear on the surface of the component as a result of the machining process. The damage evolution of surface scratch due to the combined effect of cyclic loading and residual stresses will be significantly different from the case where only the cyclic loading is considered. In the damage evolution of surface scratch, the short crack growth is of great importance owing to its apparently anomalous behaviors compared with the long-crack growth. In this paper, the effect of the surface roughness and the residual stress on the short crack growth is studied. Firstly, the surface roughness and the residual stress of 7075-T6 aluminum alloy induced by the high speed milling process with various cutting speeds and feed rates are investigated with the experimental method. The maximum height roughness parameter is measured, which is regarded as the surface defect induced by the milling process. The residual stress on the specimen surface is measured with the X-ray diffraction. Results show that the surface roughness becomes higher with the increase of the feed rate. However, the influence of the cutting speed on the surface roughness is not significant. The residual stresses on the specimen surface are all in the compressive state. The residual stress is more compressive as the feed rate increases. The effects of the process parameters on the surface roughness and the residual stress are described by the fitted formulas. Then a modified model is built to characterize short fatigue crack growth behaviors with the consideration of the residual stress. This model is proved to provide a realistic treatment of the short crack growth, as reflected by comparison with experimental fatigue crack growth data of medium carbon steel and 7075-T6 aluminum alloy published in literature. The effect of surface roughness and residual stress caused by the milling process on the short crack growth is also investigated by using the proposed model. The growth of the scratch is nonlinear when it is subjected to the cyclic load. The compressive residual stress reduces the growth rate of the crack. The crack with larger initial surface roughness grows faster than that with smaller roughness. The correlation of surface roughness, residual stress and crack growth length is obtained by the polynomial fitting. The investigations in this paper can help the damage tolerance design of structures and improve the awareness of the effect of the residual stress and surface roughness induced by the machining process on the short crack growth.

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 479
Author(s):  
Yang Zhao ◽  
Fan Sun ◽  
Peng Jiang ◽  
Yongle Sun

The effects of surface roughness on the stresses in an alumina scale formed on a Fecralloy substrate are investigated. Spherical indenters were used to create indents with different radii and depths to represent surface roughness and then the roughness effect was studied comprehensively. It was found that the residual stresses in the alumina scale formed around the rough surface are almost constant and they are dominated by the curvature rather than the depth of the roughness. Oxidation changes the surface roughness. The edge of the indent was sharpened after oxidation and the residual stress there was released presumably due to cracking. The residual stresses in the alumina scale decrease with increase in oxidation time, while the substrate thickness has little effect, given that the substrate is thicker than the alumina scale. Furthermore, the effect of roughness on the oxide growth stress is analysed. This work indicates that the surface roughness should be considered for evaluation of stresses in coatings.


Author(s):  
Chao Liu ◽  
Yan He ◽  
Yufeng Li ◽  
Yulin Wang ◽  
Shilong Wang ◽  
...  

Abstract The residual stresses could affect the ability of components to bear loading conditions and also the performance. The researchers considered workpiece surface as a plane and ignored the effect of surface topography induced by the intermittent cutting process when modeling residual stresses. The aim of this research develops an analytical model to predict workpiece residual stresses during intermittent machining by correlating the effect of surface topography. The relative motions of tool and workpiece are analyzed for modeling thermal-mechanical and surface topography. The influence of dynamic cutting force and thermal on different positions of surface topography is also considered in analytical model. Then the residual stresses model with the surface topography effect can be developed in intermittent cutting. The analytical models of dynamic cutting force, surface topography and residual stresses are verified by the experiments. The variation trend of evaluated values of the residual stress of workpiece is basically consistent with that of measured values. The compressive residual stress of workpiece surface in highest point of the surface topography are higher than that in the lowest point.


Author(s):  
Sai Deepak Namburu ◽  
Lakshmana Rao Chebolu ◽  
A. Krishnan Subramanian ◽  
Raghu Prakash ◽  
Sasikala Gomathy

Welding residual stress is one of the main concerns in the process of fabrication and operation because of failures in welded steel joints due to its potential effect on structural integrity. This work focuses on the effect of welding residual stress on the ductile crack growth behavior in AISI 316LN welded CT specimens. Two-dimensional plane strain model has been used to simulate the CT specimen. X-ray diffraction technique is used to obtain residual stress value at the SS 316LN weld joint. The GTN model has been employed to estimate the ductile crack growth behavior in the CT-specimen. Results show that residual stresses influence the ductile crack growth behavior. The effect of residual stress has also been investigated for cases with different initial void volume fraction, crack lengths.


Author(s):  
Yoru Wada ◽  
Ryoji Ishigaki ◽  
Yasuhiko Tanaka ◽  
Tadao Iwadate ◽  
Keizo Ohnishi

The effect of surface machining on fatigue life in high pressure hydrogen gas was investigated. The test was conducted under the elastic range under 45MPa gaseous hydrogen environment by the ground specimen which were machined so that the surface roughness to be Rmax = 19μm(Mark: 19s), 26μm(26s) and 93μm(93s) and by the polished specimen which are prepared so that the surface roughness to be Rmax = 1μm(1s), 3.6μm(3.6s) and 10μm(10s). The hydrogen fatigue life of ground specimens was considerably reduced with increasing surface roughness as compared to the fatigue life in air at the same surface condition. On the other hand, for the annealed conditions of the ground specimen, the reduction by hydrogen effect was fairly small. The residual stress for the ground specimen at the surface rises sharply in tension while the residual stress for the annealed specimen was nearly equal to zero. We have shown that the hydrogen fatigue damage can be evaluated by obtaining the information about residual stress on surface, stress concentration by maximum surface roughness and the threshold stress intensity SH above which hydrogen fatigue damage occurs.


2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 783
Author(s):  
Karunathilaka ◽  
Tada ◽  
Uemori ◽  
Hanamitsu ◽  
Fujii ◽  
...  

Cold forging is a metal forming that which uses localized compressive force at room temperature. During the cold forging process, the tool is subjected to extremely high loads and abrasive wear. Lubrication plays an important role in cold forging to improve product quality and tool life by preventing direct metallic contact. Surface roughness and residual stress also greatly affects the service life of a tool. In this study, variations in surface roughness, residual stress, and specimen deformation with the number of cold forging cycles were investigated under different forging conditions. Specimens that were made of heat-treated SKH51 (59–61 HRC), a high-speed tool steel with a polished working surface, were used. The specimens were subjected to an upsetting process. Compressive residual stress, surface roughness, and specimen deformation showed a positive relationship with the number of forging cycles up to a certain limit and became almost constant in most of the forging conditions. A larger change in residual stress and surface roughness was observed at the center of the specimens in all the forging conditions. The effect of the magnitude of the forging load on the above discussed parameters is large when compared to the effect of the lubrication conditions.


2006 ◽  
Vol 326-328 ◽  
pp. 1093-1096 ◽  
Author(s):  
Won Jo Park ◽  
Sun Chul Huh ◽  
Sung Ho Park

Small steel ball is utilized in Shot peening process. Called “shot ball” are shot in high speed on the surface of metal. When the shot ball hit the surface, it makes plastic deformation and bounce off, that increase the fatigue life by compressive residual stress on surface. In this study, the results of observation on the tensile strength, hardness, surface roughness, compressive residual stress and fatigue life of a shot peened Al6061-T651 were obtained. Experimental results show that arc height increase tremendously by shot velocity. Also, it shows that surface roughness, hardness, compressive residual stress and fatigue life increase as shot velocity increase.


Sign in / Sign up

Export Citation Format

Share Document