The Analysis of Galloping-Endurance Character of 500kV Power Transmission Tower

2013 ◽  
Vol 333-335 ◽  
pp. 2123-2129
Author(s):  
Xiao Hui Yang ◽  
Bo Zhang ◽  
Wen Juan Lou ◽  
Zheng Cai Fu

With transmission line galloping occurring frequently in recent years, the phenomenon of tower damaged by galloping has become more and more serious, even with the whole tower collapsed during galloping. According to the statistic and analysis on the towers in 500kV transmission line of Henan power grid, which had been damaged by the galloping accidents in the winter of 2009 to 2010, The galloping section of 500kV Kai-Xiang Line with the typical impaired character had been selected for laboratory modeling and test. Through a series of tests, the maximum loading position and the vibration model for tower had been found, and the changing character of towers dynamic response with ice thickness, galloping amplitude and frequency analyzed. The loading-endurance character of rod and bolts joint, as the major components of tower, had been tested and analyzed respectively. The bolts joints, had been proved as the weakest point for galloping-endurance performance of the whole tower. The study stated in this paper would provide guidance and suggestion to the alteration on galloping prevention and controlling for transmission line. It was also shown that, developing the study on the locking performance of bolts joints on tower is quite essential.

2012 ◽  
Vol 249-250 ◽  
pp. 798-803
Author(s):  
Zi Fu Zhang ◽  
Zeng Lu Mo ◽  
Jing Du Geng

The breakage of conductor/ground wire seriously affects the secure operation of transmission line. According to the features of UHVDC power transmission lines, the broken conductor model for bundled conductors of continuous span is built and the broken conductor load is calculated; A simulating test was carried out the first time in China for a series of "broken conductor" events on one continuous span on the field to study the dynamic response of the transmission tower because of impact, then the dynamic strain and displacement were obtained. On the basis of the simulation and experiential research results, the paper discussed about the rational values of broken wire loads for the suspension towers of UHVDC.


2020 ◽  
Vol 8 (6) ◽  
pp. 1987-1993

Transmission is a component of the electric power system alongside the generation and distribution systems. Effective and efficient planning is often required in system design and operation to ensure consistent and reliable supply of power to the Customers. Thus, transmission line parameters analysis needs to be carried out to ensure this proper planning. One of the crucial equipment used in transmission’s overhead lines is Tower supports which are of different configuration considering the Structural design, voltage ratings and current transmission. Very often, towers are randomly installed to carry lines of the chosen voltage and current rating without considering the effects of earth resistivity on which the tower is installed. This paper presents the transmission line symmetrical component parameters evaluation of a chosen Transmission tower. An algorithm was developed, and python software program was used to implement this algorithm for the analysis. In achieving target, the selected tower was imagined having been erected on six different earth resistivity ground which include, sea water, swampy ground, pure slate, sandstone and general average ground. Symmetrical component parameters evaluated includes impedance, characteristics impedance, propagation constant, shunt admittance and capacitive suceptances as they were found to be important in the effective monitoring of power transmission and distribution. The results of the analysis are presented and discussed. These results show that capacitive suceptances are independent on tower earth resistivity and vary for different tower structural configurations while other parameters vary with earth resistivity value of the tower. Furthermore, regular line parameters monitoring is a measure minimizing power transmission losses in networks


2013 ◽  
Vol 732-733 ◽  
pp. 1045-1051 ◽  
Author(s):  
Qing Hua Li ◽  
Jing Bo Yang ◽  
Jun Ke Han

State Grid Corporation of China has carried out research on key technology of UHV&EHV AC and DC multi-circuit transmission lines, the research on material and structure of transmission tower is the important part. The SSZT2 tower, on which 1000 kV AC double-circuit and 500 kV AC double-circuit are arranged, is the largest power transmission capacity all over the world. Q420 high-strength tubular steel, the plug-in boards and forging flanges are used in SSZT2 tower,and the forging flange with strength classification is applied for the first time. Through the monographic study on the tower structures, wind vibration coefficient, and biaxial bending of steel tube etc. The success of full-scale test verified the reliability in design and manufacture of multi-circuit steel tubular tower for UHV and EHV. Research results of this paper can be applied in UHV transmission line projects.


2011 ◽  
Vol 105-107 ◽  
pp. 986-989 ◽  
Author(s):  
Kai Quan Xia ◽  
Xue Wu Liu ◽  
Yun Liu

In order to study the dynamic response of power transmission lines under mechanical fault, the structural dynamic response monitoring indexes based on the requirement of field measurement were determined according to the structural characteristics of steel towers. The monitoring program was put forward in terms of the monitoring principle and basis of the sensors. The vibration characteristic, dynamic alignment and stress/strain are chosen to be the monitoring indexes. Considering the synchronization function of GPS system, the three monitoring indexes of the large span high voltage tower can be simultaneously monitored by using vibration sensor, GPS and strain sensor. The monitoring scheme can provide the theoretical base for the establishment of early warning system and the collection of dynamic response of steel tower during line break or tower collapse.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 476
Author(s):  
Nur Hamizah Hamzah ◽  
Fathoni Usman ◽  
Mohd Yazee Mat Yatim

A power transmission tower carries electrical transmission conductor at adequate distance from the ground. It must withstand all nature’s forces besides its self-weight. In structural analysis, natural frequency, mode shape and damping ratio are used to define the structural dynamic properties which relate to the basic structural features. This paper described the dynamic analysis including the modal and the time history analysis on each segment of the self-supported transmission tower to understand its dynamic responses subjected to wind action. The factors such as different height above ground, a different value of wind speed and different wind angle of attack were included in this study to see the influence of those factors towards dynamic response of the structure. The contribution of the wind towards the displacement of the structure is determined in this study by comparing the result obtained in a linear static analysis which considered the load combination without and with the presence of wind action. It was found that displacement using dynamic analysis is bigger than static linear analysis. The result illustrates that the studied factors gave a significant effect on the dynamic response of the structure and the findings indicate that dynamic analysis is vital in structural design.


2021 ◽  
Vol 11 (1) ◽  
pp. 79-90
Author(s):  
Yong Chen ◽  
Peng Li ◽  
Huan Wang ◽  
Wenping Ren ◽  
Min Cao

Accurately forecasting the icing load on overhead power transmission lines is an important issue to ensure the security and reliability of the power grid. A multi-scale time series phase-space reconstruction and regression model for icing load prediction is proposed in this paper to treat the non-stationary, nonlinear, and intermittent volatility of power line icing load data. Those is motivated by the traditional icing load prediction models having many disadvantages in the forecasting accuracy, as well as the casualness of the parameters selected. Firstly, the icing load data are decomposed into a multi-scale time series of intrinsic model function (IMF) components with stability by using the ensemble empirical mode decomposition (EEMD), which can reduce the interactions between different types of feature information. Secondly, phase-space reconstruction (PSR) theory is applied using the mutual information and the false nearest neighbor to determine the optimal delay time and embedding dimension of each IMF component. Thirdly, considering the characteristics of each IMF component, different kernel functions and optimization parameters are selected to establish the prediction model based support vector regression (SVR). Finally, according to the load prediction results, fuzzy reasoning method was used to determine the risk status of transmission line towers in this paper. Upon experimentally evaluating the validity of the model using related transmission lines of the Yunnan Power Grid, it is shown that this method could predict the real-time icing load on overhead power lines, obtaining better regression performance. This model could be used on power transmission and distribution systems for deicing and maintenance decisions.


Sign in / Sign up

Export Citation Format

Share Document