Study on Influence of the Load Path on Formability of Variable Cross-Section Y-Shaped Tube Hydroforming

2013 ◽  
Vol 347-350 ◽  
pp. 1153-1157
Author(s):  
Hai Ying Zhang ◽  
Ling Bai ◽  
Guo Jun Zhang ◽  
Rui Mao ◽  
Wen Liu

Based on the analysis of now available evaluation indexes to estimate the formability of Variable cross-section Y-shaped tube hydroforming, an aggregative indicator is proposed. The effect of load path on the formability of Variable cross-section Y-shaped tube is discussed by FEM simulation, and validity of the evaluation index and simulations are proved by experiment. Results show that with the broken line load path of 0-30-30-40, the value of aggregative indicator is the greatest and the formability is the best. The optional parameters are testified by experiment and the results are in agreement with the FEM simulation results.

2011 ◽  
Vol 101-102 ◽  
pp. 962-965 ◽  
Author(s):  
Wen Liu ◽  
Ji Qiang Li ◽  
Bin Bin Chen ◽  
Zhi Xin Jia

Based on the analysis of now available evaluation indexes to estimate the formability of T-shaped tube hydroforming, an aggregative indicator is proposed. The effect of load path on the formability of T-shaped tube is discussed by FEM simulation, and validity of the evaluation index and simulations are proved by experiment. Results show that with the broken line load path of 0-35-35-60, the value of aggregative indicator is the greatest and the formability is the best. The optional parameters are testified by experiment and the results are in agreement with the FEM simulation results.


2011 ◽  
Vol 378-379 ◽  
pp. 72-76 ◽  
Author(s):  
Hong Bin Jin

A model for wave propagation in variable cross-section bars is developed. Then a numerical simulation method based on CSPM is introduced. Furthermore the wave propagations in stepped bars and conical bars are simulated. The simulation results agree well with the analytical solutions, which demonstrate that the model can describe the wave propagation in variable cross-section bars precisely.


2011 ◽  
Vol 80-81 ◽  
pp. 542-545
Author(s):  
Ji Tao Du ◽  
Cheng Zhan Chen ◽  
Can Huang ◽  
Qi Jun Chen

Numerical simulation was made on parameters like internal pressure and axial force as well as friction coefficient of tube that affect the formation of variable cross-section tube. Through numerical simulation and orthogonal optimization, the most thickness reduction ratio and thickness uniformity on different conditions were contrasted and analyzed. An optimum scheme was obtained and it could improve the formability of variable cross-section tube. The result indicates that the axial force plays the most important role on thickness reduction ratio. The result provides technical support for the variable cross-section tube hydroforming research.


2011 ◽  
Vol 101-102 ◽  
pp. 901-904 ◽  
Author(s):  
Cheng Zhan Chen ◽  
Yi Gan ◽  
Ji Tao Du ◽  
Can Huang ◽  
Qi Jun Chen

The finite element software DYNAFORM was applied to simulate the whole tube hydroforming process. Two main failure types in the process of hydroforming are wrinkling and bursting. The strain distribution and thickness distribution at different process parameters were presented. Not only friction coefficient but also the effect of different matching of internal pressure and axial force was simulated and analyzed. In addition, the velocity of punch was considered too. The result has reference value for the variable cross-section tube hydroforming process research.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 772
Author(s):  
Xianming He ◽  
Dongxiao Li ◽  
Hong Zhou ◽  
Xindan Hui ◽  
Xiaojing Mu

The piezoelectric vibration energy harvester (PVEH) based on the variable cross-section cantilever beam (VCSCB) structure has the advantages of uniform axial strain distribution and high output power density, so it has become a research hotspot of the PVEH. However, its electromechanical model needs to be further studied. In this paper, the bidirectional coupled distributed parameter electromechanical model of the MEMS VCSCB based PVEH is constructed, analytically solved, and verified, which laid an important theoretical foundation for structural design and optimization, performance improvement, and output prediction of the PVEH. Based on the constructed model, the output performances of five kinds of VCSCB based PVEHs with different cross-sectional shapes were compared and analyzed. The results show that the PVEH with the concave quadratic beam shape has the best output due to the uniform surface stress distribution. Additionally, the influence of the main structural parameters of the MEMS trapezoidal cantilever beam (TCB) based PVEH on the output performance of the device is theoretically analyzed. Finally, a prototype of the Aluminum Nitride (AlN) TCB based PVEH is designed and developed. The peak open-circuit voltage and normalized power density of the device can reach 5.64 V and 742 μW/cm3/g2, which is in good agreement with the theoretical model value. The prototype has wide application prospects in the power supply of the wireless sensor network node such as the structural health monitoring system and the Internet of Things.


Sign in / Sign up

Export Citation Format

Share Document