The Complex Blind Deflation Algorithm Based Particle Swarm Optimization with Survival of the Fittest Mechanism

2013 ◽  
Vol 347-350 ◽  
pp. 2656-2660
Author(s):  
Wei Zhao ◽  
Chun Peng Dong

For multi-constraint nonlinear optimization, this paper puts forward a complex blind deflation algorithm based particle swarm optimization with survival of the fittest mechanism (CBD-PSOSFM) which has faster convergence speed, and then gives a quantificational formula of the improved convergence speed, discusses implement method and the rule of parameters design; Because of the blind source separation (BSS) optimization characteristic in nature, the algorithm can be used to implement semi-BSS with nonlinear multi-constraint. For active object echo detection, the paper sets up fitness function with the multi-constraint like as kurtosis, energy and outline and forms the complex blind deflation algorithm. Finally, the simulation experiment of blind deflation to complex echo validates the algorithms validity and faster convergence capability.

2016 ◽  
Vol 10 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Chen Gonggui ◽  
Du Yangwei ◽  
Guo Yanyan ◽  
Huang Shanwai ◽  
Liu Lilan

Parameter optimization of water turbine regulating system (WTRS) is decisive in providing support for the power quality and stability analysis of power system. In this paper, an improved fuzzy particle swarm optimization (IFPSO) algorithm is proposed and used to solve the optimization problem for WTRS under frequency and load disturbances conditions. The novel algorithm which is based on the standard particle swarm optimization (PSO) algorithm can speed up the convergence speed and improve convergence precision with combination of the fuzzy control thought and the crossover thought in genetic algorithm (GA). The fuzzy control is employed to get better dynamics of balance between global and local search capabilities, and the crossover operator is introduced to enhance the diversity of particles. Two different types of WTRS systems are built and analyzed in the simulation experiments. Furthermore, the sum of regulating time and another number that is the integral of sum for absolute value of system error and the squared governor output signal is considered as the fitness function of this algorithm. The simulation experiments for parameter optimization problem of WTRS system are carried out to confirm the validity and superiority of the proposed IFPSO, as compared to standard PSO, Ziegler Nichols (ZN) algorithm and fuzzy PID algorithm in terms of parameter optimization accuracy and convergence speed. The simulation results reveal that IFPSO significantly improves the dynamic performance of system under all of the running conditions.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


2011 ◽  
Vol 268-270 ◽  
pp. 934-939
Author(s):  
Xue Wen He ◽  
Gui Xiong Liu ◽  
Hai Bing Zhu ◽  
Xiao Ping Zhang

Aiming at improving localization accuracy in Wireless Sensor Networks (WSN) based on Least Square Support Vector Regression (LSSVR), making LSSVR localization method more practicable, the mechanism of effects of the kernel function for target localization based on LSSVR is discussed based on the mathematical solution process of LSSVR localization method. A novel method of modeling parameters optimization for LSSVR model using particle swarm optimization is proposed. Construction method of fitness function for modeling parameters optimization is researched. In addition, the characteristics of particle swarm parameters optimization are analyzed. The computational complexity of parameters optimization is taken into consideration comprehensively. Experiments of target localization based on CC2430 show that localization accuracy using LSSVR method with modeling parameters optimization increased by 23%~36% in compare with the maximum likelihood method(MLE) and the localization error is close to the minimum with different LSSVR modeling parameters. Experimental results show that adapting a reasonable fitness function for modeling parameters optimization using particle swarm optimization could enhance the anti-noise ability significantly and improve the LSSVR localization performance.


2020 ◽  
pp. 47-56
Author(s):  
M. Ilayaraja ◽  

Mobile adhoc network (MANET) comprises a network of mobile nodes, which communicates with one another through wireless connections. Reliability, energy efficiency, congestion control and interferences are the problems faced with the traditional routing protocols in MANET. Routing defines the process of identifying the optimal paths between two nodes in the network. For resolving these issues, several multipath routing techniques have been presented. This paper assesses the performance of the two bio-inspired multipath routing techniques namely Energy-Aware Multipath Routing Scheme based on particle swarm optimization (EMPSO) and PSO with fitness function (PSO-FF) algorithms. These two algorithms are compared and the results are investigated under several performance measures. The simulation results stated that the PSO-FF algorithm has shown better results over the EMPSO algorithm under several measures.


2020 ◽  
Vol 9 (4) ◽  
pp. 243 ◽  
Author(s):  
Hua Wang ◽  
Wenwen Li ◽  
Wei Huang ◽  
Ke Nie

The delimitation of permanent basic farmland is essentially a multi-objective optimization problem. The traditional demarcation methods cannot simultaneously take into account the requirements of cultivated land quality and the spatial layout of permanent basic farmland, and it cannot balance the relationship between agriculture and urban development. This paper proposed a multi-objective permanent basic farmland delimitation model based on an immune particle swarm optimization algorithm. The general rules for delineating the permanent basic farmland were defined in the model, and the delineation goals and constraints have been formally expressed. The model introduced the immune system concepts to complement the existing theory. This paper describes the coding and initialization methods for the algorithm, particle position and speed update mechanism, and fitness function design. We selected Xun County, Henan Province, as the research area and set up control experiments that aligned with the different targets and compared the performance of the three models of particle swarm optimization (PSO), artificial immune algorithm (AIA), and the improved AIA-PSO in solving multi-objective problems. The experiments proved the feasibility of the model. It avoided the adverse effects of subjective factors and promoted the scientific rationality of the results of permanent basic farmland delineation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Bo Yang

In this paper, an improved genetic algorithm with dynamic weight vector (IGA-DWV) is proposed for the pattern synthesis of a linear array. To maintain the diversity of the selected solution in each generation, the objective function space is divided by the dynamic weight vector, which is uniformly distributed on the Pareto front (PF). The individuals closer to the dynamic weight vector can be chosen to the new population. Binary- and real-coded genetic algorithms (GAs) with a mapping method are implemented for different optimization problems. To reduce the computation complexity, the repeat calculation of the fitness function in each generation is replaced by a precomputed discrete cosine transform matrix. By transforming the array pattern synthesis into a multiobjective optimization problem, the conflict among the side lobe level (SLL), directivity, and nulls can be efficiently addressed. The proposed method is compared with real number particle swarm optimization (RNPSO) and quantized particle swarm optimization (QPSO) as applied in the pattern synthesis of a linear thinned array and a digital phased array. The numerical examples show that IGA-DWV can achieve a high performance with a lower SLL and more accurate nulls.


2012 ◽  
Vol 6-7 ◽  
pp. 736-741
Author(s):  
Xin Min Ma ◽  
Lin Li Wu

A new algorithm for timetabling based on particle swarm optimization algorithm was proposed, and the key problems such as particle coding, fitness function fabricating, particle swarm initialization and crossover operation were settled. The fitness value declines when the evolution generation increases. The results showed that it was a good solution for course timetabling problem in the educational system.


Sign in / Sign up

Export Citation Format

Share Document