Data Aggregation for Failure Tolerance in Wireless Sensor Network

2013 ◽  
Vol 347-350 ◽  
pp. 965-969
Author(s):  
Na Wang ◽  
Yue Ping Wu

One of the critical tasks in designing a wireless sensor network is to monitor, detect, and report various useful occurrences of events in the network domain which are determined by the result of data aggregation. Fault tolerance is critical to the efficiency of data aggregation scheme. One important reason is that sensor nodes are neither reliable nor stabile. In this paper, we present an improved k-means data aggregation algorithm considering the proposal of isolated point. Each cluster includes three types of sets: aggregation data, fault data set and abnormal data set. Aggregation data comes from normal sensors in this cluster through the improved K-means aggregation algorithm and abnormal nodes can be detected according to the aggregation result.

2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879584 ◽  
Author(s):  
Danyang Qin ◽  
Yan Zhang ◽  
Jingya Ma ◽  
Ping Ji ◽  
Pan Feng

Due to the advantages of large-scale, data-centric and wide application, wireless sensor networks have been widely used in nowadays society. From the physical layer to the application layer, the multiply increasing information makes the data aggregation technology particularly important for wireless sensor network. Data aggregation technology can extract useful information from the network and reduce the network load, but will increase the network delay. The non-exchangeable feature of the battery of sensor nodes makes the researches on the battery power saving and lifetime extension be carried out extensively. Aiming at the delay problem caused by sleeping mechanism used for energy saving, a Distributed Collision-Free Data Aggregation Scheme is proposed in this article to make the network aggregate data without conflicts during the working states periodically changing so as to save the limited energy and reduce the network delay at the same time. Simulation results verify the better aggregating performance of Distributed Collision-Free Data Aggregation Scheme than other traditional data aggregation mechanisms.


2021 ◽  
Author(s):  
Mohamed Younis Mohamed Alzarroug ◽  
Wilson Jeberson

Wireless sensor networks (WSNs) consist of large number of sensor nodes densely deployed in monitoring area with sensing, wireless communications and computing capabilities. In recent times, wireless sensor networks have used the concept of mobile agent for reducing energy consumption and for effective data collection. The fundamental functionality of WSN is to collect and return data from the sensor nodes. Data aggregation’s main goal is to gather and aggregate data in an efficient manner. In data gathering, finding the optimal itinerary planning for the mobile agent is an important step. However, a single mobile agent itinerary planning approach suffers from two drawbacks, task delay and large size of the mobile agent as the scale of the network is expanded. To overcome these drawbacks, this research work proposes: (i) an efficient data aggregation scheme in wireless sensor network that uses multiple mobile agents for aggregating data and transferring it to the sink based on itinerary planning and (ii) an attack detection using TS fuzzy model on multi-mobile agent-based data aggregation scheme is shortly named as MDTSF model.


2015 ◽  
Vol 14 (10) ◽  
pp. 6142-6146
Author(s):  
Gurpreet Kaur ◽  
Vishal Arora

Wireless sensor networks have become increasingly popular due to their wide range of application. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. Minimizing the energy consumption of a wireless sensor network application is crucial for effective realization of the intended application in terms of cost, lifetime, and functionality. However, the minimizing task is hardly possible as no overall energy cost function is available for optimization. In this paper, we have proposed a modified alogirthm of leach where hard and soft threshold values will be applied for improving the overall throughput and network lifetime.


Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
D. Vinodha ◽  
E. A. Mary Anita

In a wireless sensor network, data privacy with a minimum network bandwidth usage is addressed using homomorphic-based data aggregation schemes. Most of the schemes which ensure the end-to-end privacy provide collective integrity verification of aggregated data at the receiver end. The presence of corrupted values affects the integrity of the aggregated data and results in the rejection of the whole data by the base station (BS) thereby leading to the wastage of bandwidth and other resources of energy constraint wireless sensor network. In this paper, we propose a secured data aggregation scheme by slicing the data generated by each sensor node deployed in layered topology and enabling en route aggregation. Novel encoding of data and hash slices based on child order is proposed to enable concatenation-based additive aggregation and smooth extraction of slices from the aggregate by the BS. Elliptic curve-based homomorphic encryption is adopted to ensure end-to-end confidentiality. To the best of our knowledge, the proposed scheme is the first which facilitates the BS to perform node-wise integrity verification, filter out only the corrupted portion, and implement dynamic query over the received data. Communication- and computation-based performance analysis shows the efficiency of the proposed scheme for varied network sizes. The scheme can resist eavesdropping attack, node compromising attack, replay attack, malleability attack, selective dropping attack, and collusion attack.


Sign in / Sign up

Export Citation Format

Share Document