industrial wireless sensor network
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 4)

2021 ◽  
Vol 10 (6) ◽  
pp. 3297-3302
Author(s):  
A. Manjunathan ◽  
E. D. Kanmani Ruby ◽  
W. Edwin Santhkumar ◽  
A. Vanathi ◽  
P. Jenopaul ◽  
...  

The use of a real-time operating system is required for the demarcation of industrial wireless sensor network (IWSN) stacks (RTOS). In the industrial world, a vast number of sensors are utilised to gather various types of data. The data gathered by the sensors cannot be prioritised ahead of time. Because all of the information is equally essential. As a result, a protocol stack is employed to guarantee that data is acquired and processed fairly. In IWSN, the protocol stack is implemented using RTOS. The data collected from IWSN sensor nodes is processed using non-preemptive scheduling and the protocol stack, and then sent in parallel to the IWSN's central controller. The real-time operating system (RTOS) is a process that occurs between hardware and software. Packets must be sent at a certain time. It's possible that some packets may collide during transmission. We're going to undertake this project to get around this collision. As a prototype, this project is divided into two parts. The first uses RTOS and the LPC2148 as a master node, while the second serves as a standard data collection node to which sensors are attached. Any controller may be used in the second part, depending on the situation. Wireless HART allows two nodes to communicate with each other.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mahendra Ram ◽  
Sushil Kumar ◽  
Arvind Kumar ◽  
Rupak Kharel

Background: Enabling industrial environment with automation is growing trend due to the recent developments as industry 4.0 centric production. The industrial wireless sensor network environments have a number of constraints, including densely deployed nodes, delay constraint for mechanical operation, and access constraints due to node position within instruments. The related literature have applied existing models of wireless sensor network in industrial environment without appropriate updating in the different layers of communication, which results in performance degradation in realistic industrial scenario. Method: This paper presents a framework for Energy Oriented Cross Layer Data Dissemination Path (E-CLD2 P) towards enabling green computing in industrial wireless sensor network environments. It is a cross-layer design approach considering deployment of sensors at the physical layer up to data dissemination at the network layer and smart services at application layer. In particular, an energy centric virtual circular deployment visualization model is presented focusing on physical layer signal transmission characteristics in industrial WSNs scenario. A delay centric angular striping is designed for cluster based angular transmission to support deadline constrained industrial operation in the WSNs environments. Algorithms for energy centric delivery path formulation and node’s role transfer are developed to support green computing in restricted access industrial WSNs scenario. Results: The green computing framework is implemented to evaluate the performance in a realistic industrial WSNs environment. Conclusion: The performance evaluation attests the benefits in terms of number of metrics in realistic industrial constrained environments.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5809
Author(s):  
Seong-eun Yoo ◽  
Taehong Kim

Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in the special issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2890 ◽  
Author(s):  
Fredrik Kvist ◽  
Andreas Ramstad Urke ◽  
Knut Øvsthus

Recently, the industrial wireless sensor network (WSN) has gained attention as a complement to wired networks due to its flexibility and lower installation cost. We present a novel Reverse Packet Elimination (RPE) algorithm implementation at the IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) stack that increases reliability without significantly increasing energy consumption. RPE increases the reliability while conserving energy by transmitting a cancellation packet from the sink towards the sender to reduce unnecessary packets. The evaluation utilized mainly the 6TiSCH Simulator, with additional analytical assessments. We present several evaluation scenarios and compare WSN with and without RPE. In a WSN where each link had a packet reception rate of 70%, RPE increased the reliability with 11.8%. Furthermore, the average latency decreased with 39.1%. The average energy consumption increased with 19.8% when utilizing RPE. However, the network lifetime, i.e., the time before the first node experiences battery depletion increases slightly, which is a significant improvement compared to alternative replication mechanisms.


2020 ◽  
pp. 532-555
Author(s):  
Bilal Muhammad Khan ◽  
Rabia Bilal

Robustness and reliability are two essential network parameters to be given priority in Industrial Wireless Sensor Network. But at the same time it is difficult to achieve gain in these performance metrics. Since in industries these networks are used for monitoring, control and automation processes, therefore, it also requires robust communication with minimum delay. Considering the need of high QoS in Industrial WSN, protocols and standards were developed to fulfil the requirement of reliable data communication in harsh environment. In year 2007, HART community designed a Wireless HART standard for efficient industrial communication. This standard gain high reputation soon after its implementation and still being used as a universal solution for industries. In 2009, another standard ISA100.11a was developed, it also gives promised results but fails to eliminate WHART. Both these standards are still competing in industry and the results of these standards are more reliable in comparison to other wireless industrial protocols that exists.


Sign in / Sign up

Export Citation Format

Share Document