Simulation of Flexural Behavior of Reinforced Concrete Beams under Impact Loading

2013 ◽  
Vol 351-352 ◽  
pp. 1018-1023
Author(s):  
Arnaud Rouchette ◽  
Wei Ping Zhang ◽  
Hui Chen

This paper focuses on the numerical simulation of the flexural behavior of reinforced concrete beams under impact loading by the LS-DYNA finite element code. An enhanced version of the Concrete Damage Model Release 3 (K&C) was used for the concrete materials and a Plastic Kinematic Model was adopted for steel reinforcement, both material models used parameters to cope with the effects of strain rate. The simulation also took the bond between concrete and steel bar into consideration, and its behavior model was based on high strain rate experimental results. The simulation of the mid span drop tests, both with and without bond consideration, were compared to experimental results to investigate the influence of bond consideration and the reliability of the overall simulation model. Compared with experimental results, the calculated mid-span deflections with the bond model agreed much better than those without the bond model, and a simplified formulation was drawn from the trend on deformation depending on the impact velocity.

2010 ◽  
Vol 10 (6) ◽  
pp. 1069-1078 ◽  
Author(s):  
S. Tachibana ◽  
H. Masuya ◽  
S. Nakamura

Abstract. The purpose of this research is to collect fundamental data and to establish a performance-based design method for reinforced concrete beams under perpendicular impact load. Series of low speed impact experiments using reinforced concrete beams were performed varying span length, cross section and main reinforcement. The experimental results are evaluated focusing on the impact load characteristics and the impact behaviours of reinforced concrete beams. Various characteristic values and their relationships are investigated such as the collision energy, the impact force duration, the energy absorbed by the beams and the beam response values. Also the bending performance of the reinforced concrete beams against perpendicular impact is evaluated. An equation is proposed to estimate the maximum displacement of the beam based on the collision energy and the static ultimate bending strength. The validity of the proposed equation is confirmed by comparison with experimental results obtained by other researchers as well as numerical results obtained by FEM simulations. The proposed equation allows for a performance based design of the structure accounting for the actual deformation due to the expected impact action.


2020 ◽  
pp. 136943322097478
Author(s):  
Qi Cao ◽  
Jiadong Bao ◽  
Changjun Zhou ◽  
Xianrui Lv

This paper aims to study the flexural behavior of CFRP enclosed reinforced concrete beams with different shear reinforcement. Four-point bending tests were carried out on six concrete beams with different contents of steel fibers (0.5%, 1.0%, and 1.5%) as well as six beams with different stirrup spacing (100 mm, 150 mm, and 300 mm) without fiber. The effect of steel fiber (SF) content as well as stirrup spacing on flexural properties of concrete beams were investigated. Meanwhile, the effect of expansive agent on the properties of specimens was also studied. The data collected in this test include cracking load, ultimate load, mid-span deflection, strain of CFRP (Carbon fiber reinforced polymer), strain of longitudinal steel reinforcement as well as the failure modes. Test results show that both cracking loads and ultimate loads of the SF reinforced beam specimens are generally higher than those of the corresponding stirrup reinforced beam specimens. Experimental results also indicate that the addition of SF can improve the ductility and cracking resistance of specimens. This therefore demonstrates that it is feasible to replace stirrup reinforcement with SF as shear reinforcement. In addition, it exhibits a good agreement between experimental results and analytical predictions in cracking loads and ultimate loads.


1990 ◽  
Vol 211 ◽  
Author(s):  
Nianzhi Wang ◽  
Sidney Mindess

AbstractImpact tests were carried out on post-tensioned beams, prepared both with plain concrete and fibre-reinforced concrete. It was found that post-tensioned beams might be less resistant to impact loading than were ordinary reinforced concrete beams. However, the addition of fibres to the concrete greatly increased the impact resistance of these beams.


2018 ◽  
Vol 183 ◽  
pp. 02038
Author(s):  
Yingqian Fu ◽  
Xinlu Yu ◽  
Xinlong Dong ◽  
Fenghua Zhou

This paper presents an experimental program of reinforced concrete beam without stirrups tested by impact three-point-bending under different initial velocity (drop height). As the results shown, for the static events, the failure mode is bending firstly, and then translates to shearing. the longitudinal reinforcements play an important role for the increasing of loading during bending stage. For the impact events, reinforced concrete beams failed in a flexural failure model at slow rates of loading and in shear failure model at high impact loading rate relatively. Moreover, the shear failure and bending failure have developed during the peak stage of Force-deflection curves. That is different with the emergence sequence of cracks under static tests. So the mechanical parameters of peak stage should be considered for the resistance of concrete beam under impact loading.


Sign in / Sign up

Export Citation Format

Share Document