Seismic Performance of RC Short Columns Strengthened with BFRP

2013 ◽  
Vol 351-352 ◽  
pp. 1532-1536 ◽  
Author(s):  
Bin Ding ◽  
Li Jun Ouyang ◽  
Zhou Dao Lu ◽  
Wei Zhen Chen

BFRP has excellent strength, durability, thermal properties and economic cost. To test seismic performance of short columns strengthened with BFRP. Low cyclic loading test was conducted on one comparative short column and two RC short columns strengthened with BFRP. The test shows that short columns warped by BFRP show excellent failure modes, shear capacity, ductility and energy dissipation. As a new fiber reinforced plastic, BFRP has a good prospect in the area of seismic strengthening for its low cost and comprehensive mechanical properties.

2013 ◽  
Vol 7 (1) ◽  
pp. 127-135 ◽  
Author(s):  
E. Grande ◽  
M. Imbimbo ◽  
A. Rasulo

The paper discusses the results of an experimental investigation carried out on reinforced concrete (RC) beams strengthened in shear by externally bonded fiber reinforced plastic (FRP) sheets. The study is devoted to analyze the role that the transverse steel reinforcement and the beam slenderness ratio could play on the resistant mechanism of RC beams strengthened in shear by FRP composites. The results are summarized and analyzed in detail in the paper in terms of shear capacity, cracking pattern and shear resisting contribution of FRP.


2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4721-4725
Author(s):  
T. H. Lee ◽  
◽  
H. Gim ◽  
S. Oh ◽  
T. Gotthardt ◽  
...  

Linear scale has significant impacts on the machine tool accuracy, since the positioning of the linear axes are controlled by its measurement. This paper presents a novel concept of linear scale design which can provide high thermal stability with low cost. This concept applies two different materials: a steel linear scale attached mechanically on a carbon fiber reinforced plastic (CFRP) tube. Attaching this two materials, the thermal behavior of the steel scale can be mechanically compensated by the CFRP tube when the temperature changes. The potential of the design concept is analyzed based on the experiment results.


2019 ◽  
Vol 9 (13) ◽  
pp. 2708 ◽  
Author(s):  
Yixin Zhang ◽  
Shansuo Zheng ◽  
Xianliang Rong ◽  
Liguo Dong ◽  
Hao Zheng

Previous research shows that freeze–thaw cycles represent one of the most dangerous threats to reinforced concrete (RC) structures. However, there is almost no experimental data on the effects of freeze–thaw cycles on the seismic behavior of RC columns showing flexure-shear failure. In this study, three columns with the shear span-to-depth ratio of 2.5 were subjected to different numbers of freeze–thaw cycles (FTCs) and pseudo-static testing. The seismic performance indexes of the specimens were analyzed in terms of hysteretic behavior, skeleton curves, shear deformation, and energy dissipation. The test observations show that the failure patterns of the test columns altered from the flexure dominated to shear dominated, owing to the more severe deterioration in shear capacity induced by freeze–thaw attack than in flexure capacity. The test results also indicate that freeze–thaw cycles significantly decrease the ductility and energy dissipation of test columns, and they increase the contributions of shear deformation to the total deformation.


2003 ◽  
Vol 30 (5) ◽  
pp. 819-829 ◽  
Author(s):  
Yeou-Fong Li ◽  
Yi-Ying Sung

In this paper, the analytical and experimental results of tests on a benchmark and a damaged circular bridge column are presented. The benchmark column is a 40% scale reinforced concrete circular bridge column damaged as a result of shear failure during a cyclic-loading test; the benchmark column was then repaired by epoxy and non-shrinkage mortar and rehabilitated by carbon fiber reinforced plastic (CFRP) after the cyclic-loading test. The benchmark bridge column is tested under a cyclic-loading test with constant axial load. The result shows that the column suffered shear failure at low displacement ductility. Non-shrinkage mortar with high-pressure epoxy injection was used to repair the damaged bridge column, and then three-layer CFRP was used to rehabilitate the shear strength of the bridge column. The test result shows that the repaired and rehabilitated column develops significantly improved hys ter etic responses at high displacement ductility. The analytical lateral force – displacement relationship of the bridge columns can accurately predict the experimental result, especially in the nonlinear region.Key words: carbon fiber reinforced plastic, repair and rehabilitation, bridge column.


2020 ◽  
Vol 24 (1) ◽  
pp. 79-89
Author(s):  
Dongyue Wu ◽  
Hui Su ◽  
Shilin Wang ◽  
Wei Chen

Concrete hollow blocks have the advantages of simplified construction, reduced construction time, and better thermal performance, and can thereby achieve energy conservation in building engineering and significantly improved thermal and mechanical performance. A new tenon composite block is presented to achieve better self-thermal insulation and mechanical performance by integrating thermal materials into blocks. The tenon composite block application requires satisfying mechanical and seismic performance. Therefore, to prove the mechanical and seismic performance of the tenon composite block, a low cyclic loading test was performed on two self-thermal insulation wall specimens: the tenon composite block and the “Martha” block (used as the comparison specimen). The crack distributions, failure modes, force–displacement data expressed using hysteresis and skeleton curves, mechanical parameters of strengths, displacements, ductility coefficients, stiffness degradations, and equivalent viscous damping coefficients of the two specimens were analyzed in the low cyclic loading test. By analyzing the specimen crack distributions and failure modes, the tenon composite block was proven capable of effectively connecting the heat insulation and loading bearing parts. The differences in the force–displacement data and the mechanical parameters between the tenon composite block and “Martha” block specimens, such as the higher strength and stiffness of the tenon composite block specimen and similar ductility performance with the widely applied “Martha” specimen, were mainly caused by the size differences between the tenon composite block and “Martha” specimens. Finally, suggestions for tenon composite block applications are proposed to overcome the limitations of the tenon composite block’s ability to consume seismic energy.


2011 ◽  
Vol 250-253 ◽  
pp. 2371-2375
Author(s):  
Hua Wei Zhao ◽  
Xiu Qin Cui ◽  
Tong Hao

Four constructional columns with concrete porous brick walls were constructed for low cyclic loading test. The damage on the characteristics and strength of the wall, hysteresis curve, ductility and other seismic performance were analyzed. Setting constructional columns in the wall at both ends increase the ultimate strength and improve its deformation, ductility and other properties. Meanwhile the height-wide-ratio of wall, axial pressure and other factors on the shear bearing capacity on the wall have been studied. Based on the shear capacity formula of wall in the Structural Seismic Design Code, considering the contribution of the constructional columns on the shear strength, according to the results, the shear capacity formula of constructional columns with concrete brick walls is presented.


Sign in / Sign up

Export Citation Format

Share Document