Analysis on Feet-Lock Bolt in Viscoelastic Surrounding Rock

2013 ◽  
Vol 353-356 ◽  
pp. 1543-1546
Author(s):  
Qiang Huang

The effect of feet-lock bolt was studied in the rheological surrounding rock by numerical simulation. The results show: feet-lock bolt can improve the force state of vault, feet-lock bolt and grouting can improve the effect of vault stress state better in weak rock. After invert is applied, invert become the main load-bearing structure, the function of feet-lock bolt is greatly reduced after invert applied.

2020 ◽  
Vol 13 (23) ◽  
Author(s):  
Guangming Zhao ◽  
Chongyan Liu ◽  
Siming Kao ◽  
Xiaobo Zhang ◽  
Xiang Cheng

2020 ◽  
Vol 103 ◽  
pp. 103492 ◽  
Author(s):  
Sheng-rong Xie ◽  
Hao Pan ◽  
Dong-dong Chen ◽  
Jun-chao Zeng ◽  
Hai-zheng Song ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ruofei Zhang ◽  
Guangming Zhao ◽  
Xiangrui Meng ◽  
Jian Sun ◽  
Wensong Xu ◽  
...  

To address the prominent status of great deformation and difficult maintenance of the roadway under high stresses, this study investigated the mechanical characteristics of surrounding rocks and bearing structural stability in a roadway under adjustment and redistribution of stresses through theoretical analysis, numerical simulation, and engineering field test. Stability forms of the bearing structure of roadway surrounding rocks were analyzed by using the axis-changing theory from the perspectives of surrounding rock, mechanical properties of roadways, surrounding rock stress distribution, and mechanical mechanism of the bearing structure. It is suggested that the surrounding rock stress distribution state is improved and the bearing structure is optimized through unloading and reinforcement construction. A mechanical model of roadway excavation was constructed to analyze the influences of excavation spatial effect on the stress releasing and bearing structure of surrounding rocks. A rock postpeak strain softening and dilatation model was introduced to investigate the mechanical characteristics of the surrounding rock mass in the rupture residual zone and plastic softening zone in a roadway. Moreover, we analyzed the influences of unloading and reinforcement construction on the stress path and mechanical characteristics of the rock unit model, which disclosed the adjustment mechanism of the bearing structure of surrounding rocks by the failure development status of rocks. A numerical simulation on the distribution of surrounding rock stress fields and adjustment features of the bearing structure after roadway excavation and unloading and reinforcement construction was carried out by using the FLAC3D program. Results demonstrate that the unloading construction optimizes the axial ratio of spatial excavation in a roadway and the reinforcement zones on both sides are the supporting zones of the bearing structure. Moreover, the ratio between the distance from two side peaks to the roadway sides and the distance from the roof and floor peaks to the excavation space is equal to the coefficient of horizontal pressure. In other words, the final collapse failure mode of surrounding rock is that the long axis of the excavation unloading space points to the same direction with the maximum principal stress of the primary rock. Reinforcement forces the surrounding rocks to form a “Ω-shaped” bearing structure, which is in favor of the long-term maintenance of the roadway.


2020 ◽  
Vol 13 (21) ◽  
Author(s):  
Guangming Zhao ◽  
Chongyan Liu ◽  
Siming Kao ◽  
Xiaobo Zhang ◽  
Xiang Cheng

2020 ◽  
Vol 27 (1) ◽  
pp. 41-54
Author(s):  
Xiaohan Wang ◽  
Dongxu Li ◽  
Rui Hao

AbstractWith the continuous advancement of space exploration missions, the mechanical environment for planetary detectors is becoming increasingly severe. As a result, fatigue, fracture, large deformation and other forms of failures are more likely to occur at the load-bearing structures. As a critical part of the load-bearing structure of a goat, goat tibia has remarkable toughness because of its unique microstructures. In this investigation, firstly, the cortical bone of goat tibia was observed by SEM, and the characteristic microstructures in different regions were identified. Secondly, the cross section of cortical bone was loaded by long-term inplane stress, then the toughness of cortical bone in different regions are obtained and compared based on the orientation and distribution of cracks after the load. Thirdly, a simplified FEM model mimicking typical microstructure of the cortical bone is proposed using cohesive modeling, and then the toughening mechanism of the typical microstructure is validated with numerical simulation. Finally, the toughening mechanisms of cortical bone were discussed according to the SEM observation as well as the numerical simulation. This study of the toughening mechanism of cortical bone can be helpful for the biomimetic design of high-toughness structures.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2015 ◽  
Vol 723 ◽  
pp. 271-278
Author(s):  
Yu Liang Zhou ◽  
Dong Feng Yuan ◽  
Jun Zheng ◽  
Hua Wang

To provide a theoretical basis for water prevention and control methods and reasonable supporting techniques for vertical shaft, and to ensure the shaft construction to pass the sandstone aquifer safely and rapidly, numerical simulation using dynamic damage constitutive model, which was a user-defined constitutive modules in FLAC3D, a lagrangian analysis code in three dimensions, has been applied to investigate the dynamic damage effect in the surrounding rock of the grouting curtain near the driving working face for vertical shaft excavated by blasting. The results indicate that the distribution of the damage zone in the surrounding rock of the shaft, which decreases the effective thickness of the grouting curtain, was like a ellip-se, and that the depth of the damage zone in the surrounding rock of the shaft grouting curtain is fewer than that of the driving face floor. It can be concluded that the centre part of the driving face floor, especially the cutting hole zones, and the shaft wall in the greater horizontal stress side are the " key parts " for shaft water prevention and control methods.


2014 ◽  
Vol 953-954 ◽  
pp. 1638-1642
Author(s):  
Ai Qing Liu ◽  
Jian Zhang ◽  
Peng Cheng ◽  
Yu Hai Zhang

Prestress is a key parameter in bolting, while the cohesive force of layers in the compound roof strata is low and prone to separation, causing the prestress proliferation very poor. With the method of numerical simulation analysis,the location of separation in compound roof to affect the performance of bolting support was researched. It is concluded the roof separation in the edge of anchorage zone, the prestress field superpose, but is away from the deep surrounding rock and shows poor stability,however the role of cable can make up for the defect of rockbolts support. It has been found the highly prestressed strength bolting system adapts to the compound roof.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


Sign in / Sign up

Export Citation Format

Share Document