Study on Lateral Earth Pressure of Anchored Retaining Wall

2013 ◽  
Vol 353-356 ◽  
pp. 312-317
Author(s):  
Ying Yong Li ◽  
Li Zhi Zheng ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Zhi Chao Xue

In order to ensure the security of gravity retaining wall in the high fill subgrade, the design of gravity retaining wall with anchors is proposed,the characteristic of the new wall is that comment anchors are added to the traditional gravity retaining wall,by friction anchors provide lateral pull to the wall so the stability of the new wall is improved. Because of the constraints of anchors, the lateral free deformation is influenced and the soil pressure distribution is very complicated, field tests showed that soil pressure distribution is nonlinear and pressure concentrate in anchoring position. In order to reveal the supporting mechanism of retaining wall and propose the soil pressure formula, the model test of anchor retaining wall is made and numerical simulation is done. The results show that soil pressure appears incresent above the anchor and decreasing below the anchor, the soil pressre also grew larger away from the anchor proximal in the horizontal direction.

Gravity retaining wall are structures used to retain the soil by its weight .the stability of such type of walls depend on the magnitude and direction of the horizontal forces exerted by soil . it found that there is many factors affect the value and the acting point of acting. Based on this, a study was conducted to investigate the effect of water table, external vertical loads, sloping of the backfill and the type of the backfill soil. It show that, the value of the horizontal soil pressure increase from147KN/m' on dry soil to about 307 KN/m' as the soil become saturated.also,effect of external loads are studied , and show its increase the total horizontal forces of the soil pressure. Sloping the backfill soil behind the retaining wall also great effect on the earth pressure. The type of the backfill soil behind the retaining wall also investigated and found its effect of the earth forces.


2013 ◽  
Vol 477-478 ◽  
pp. 562-566
Author(s):  
Fang Ding He ◽  
Guang Jun Guo ◽  
Zhi Dong Zhou ◽  
Jian Qing Wu

The anchor plays a very important role in gravity retaining wall. The displacement of retaining and soil pressure distribution with anchor is different from that without anchor. The numerical simulation software FLAC3D is used to analysis the soil pressure distribution characteristics of gravity retaining wall. The results show that the anchor plays a supporting role in gravity retaining wall. There is a critical length in the anchor in gravity retaining wall. The soil pressure distribution of gravity retaining wall with anchor does not conform to the classical Coulomb linear distribution theory and more research is needed for the soil pressure distribution theory. The research has important guiding significance on the design and construction development of gravity retaining wall.


2013 ◽  
Vol 477-478 ◽  
pp. 596-599
Author(s):  
Jian Qing Wu ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Yi Fan Yu ◽  
Chao Li

With the highway subgrade fill increasing, traditional retaining wall cannot meet the requirements for supporting. To meet this requirement, the prestressed opposite-pull retaining wall was put forward. Due to the anchor pull of the new-style retaining wall, its bearing capacity was enhanced, but the stress is not clear. In order to reveal the stress distribution of the prestressed opposite-pull retaining wall, FLAC3D was adept to do numerical simulation on the new-style retaining wall. It simulated three conditions of the wall with no anchor, with anchor but without prestress and with prestressed anchor. The results showed that, after the layout of prestressed anchor, the lateral earth pressure of the region near the anchor increased with the increase of prestress, the lateral earth pressure of the wall is parabola distribution. The lateral earth pressure was larger than that of the wall with no anchor and with anchor but without prestress. The bearing capacity of the retaining wall was effectively improved.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Septiana Widi Astuti ◽  
Ayu Prativi

Abutment bridge is a building under the bridge located on both sides of the bridge end. The process of building a bridge abutment often requires excavation to the depth of the abutment base so that the abutment reinforcement and casting work can be carried out. In deep excavation work, each side of the excavation needs to be installed in a flexible retaining wall type (plaster) first. In this study, CCSP stability analysis was carried out on earth excavation work for abutment bridge BH 1751. The calculation method starts from determining the lateral earth pressure acting on the soil, then determining the depth of CCSP planting that is able to produce CCSP stability on the rolling force. The analysis shows that the depth of CCSP planting that meets the safety requirements of the rolling force is 20 m


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sahar Ghobadi ◽  
Hadi Shahir

Purpose The purpose of this paper is to study the distribution of active earth pressure in retaining walls with narrow cohesion less backfill considering arching effects. Design/methodology/approach To this end, the approach of principal stresses rotation was used to consider the arching effects. Findings According to the presented formulation, the active soil pressure distribution is nonlinear with zero value at the wall base. The proposed formulation implies that by increasing the frictional forces at both sides of the backfill, the arching effect is increased and so, the lateral earth pressure on the retaining wall is decreased. Also, by narrowing the backfill space, the lateral earth pressure is extremely decreased. Originality/value A comprehensive analytical solution for the active earth pressure of narrow backfills is presented, such that the effects of the surcharge and the characteristics of the stable back surface are considered. The magnitude and height of the application of lateral active force are also derived.


2014 ◽  
Vol 971-973 ◽  
pp. 2141-2146
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu

Using the frame supporting structure of pre-stressed anchor bolt seismic strengthening technology reinforced the instability of gravity retaining wall. Earth pressure of retaining wall in seismic reinforcement after shall take between active and static earth pressure for the form of the distribution . In this paper, based on the limit equilibrium theory, and the whole stability for retaining walls is analysis, the theoretical formula of the stability safety factor between stability against slope and overturning safety factor is derived. By calculation and comparative analysis with an example, the stability safety factor of gravity retaining wall with introducing this strengthening technology is improved obviously. Keywords: frame anchor structure; seismic strengthening; anti-slip and anti-overturning; stability coefficient;


2013 ◽  
Vol 671-674 ◽  
pp. 1217-1220
Author(s):  
Yong Wei Wang ◽  
Hong Xia Li ◽  
Yan Qin Guo

Combining with a mountain highway retaining wall earth pressure measured data, carried out a detailed study of the of multiple retaining wall back soil pressure distribution law, based on multi-level retaining wall measured horizontal earth pressure data mountainous retaining wallshorizontal earth pressure formula is derived, summed up the horizontal earth pressure with filling height variation.


2012 ◽  
Vol 204-208 ◽  
pp. 1929-1932
Author(s):  
Peng Li ◽  
Hai Tao Wan

This study presents the research of soil pressure distribution form of multi-stage mountain gravity retaining wall through specific engineering tests. There has a further discussion on the soil pressure calculation formula of the multi-stage gravity retaining wall in different conditions, which aims at providing the useful reference for the formal construction design.


2020 ◽  
Vol 198 ◽  
pp. 02032
Author(s):  
Wu Yuedong ◽  
Zhang Lei ◽  
Xu Nan ◽  
Lui Jian

Based on the actual project, the influence of geogrid on the stability of the retaining wall of the single-layer masonry reinforced retaining wall is studied through field test and finite element software ABAQUS numerical simulation. The influence of geogrid on the stability of the retaining wall was determined by analyzing the changes in the pressure of the backfill, the displacement of the retaining wall and the strain of the geogrid, and changing the length and spacing of the geogrid through the controlled variable method. The results show that the geogrid can limit the horizontal displacement of the soil, balance the earth pressure, and improve the overall stability of the retaining wall. By increasing the length of the geogrid and reducing the distance of the geogrid, the design of the retaining wall is optimized, which has good economic and time benefits.


2013 ◽  
Vol 353-356 ◽  
pp. 368-373 ◽  
Author(s):  
Hong Bo Zhang ◽  
Jian Qing Wu ◽  
Ying Yong Li ◽  
Xiu Guang Song ◽  
Zhi Chao Xue

The recent research and development of the reinforced retaining wall is composed of cantilevered reinforced concrete retaining walls which symmetric set on both sides of subgrade and through roadbed width of counter-pulled anchors. The prestressing force can be applied on anchors.The retaining wall has the advantange of high safety, lateral small deformation , wide applicable range and low requirements for the foundation bearing capacity. But due to the lateral restraint of bolt, the soil pressure distributions of retaining wall change a lot. The change will have a significant impact on structures. In order to reveal the reinforced soil retaining wall pressure distributions, laboratory model test was done. The monitoring instruments such as earth pressure cells, anchor rope dynamometers and dial indicators were installed. Research and analysis on the loading process reinforced type soil retaining wall under soil pressure, the lateral earth pressure and anchor rope tension change rule were researched and analysed. The experimental results showed that with the increasing of filling soil height, the retaining wall had a tendency to tilt outward. The basolateral external pressure is larger than the inside pressure. At the same time, anchor tension increased as the top loading increased. Lateral earth pressure distribution is parabolic. Soil pressure around the anchor is larger than other area, the soil arch effect is significant.


Sign in / Sign up

Export Citation Format

Share Document