scholarly journals Stability analysis of composite I-shaped masonry reinforced retaining wall

2020 ◽  
Vol 198 ◽  
pp. 02032
Author(s):  
Wu Yuedong ◽  
Zhang Lei ◽  
Xu Nan ◽  
Lui Jian

Based on the actual project, the influence of geogrid on the stability of the retaining wall of the single-layer masonry reinforced retaining wall is studied through field test and finite element software ABAQUS numerical simulation. The influence of geogrid on the stability of the retaining wall was determined by analyzing the changes in the pressure of the backfill, the displacement of the retaining wall and the strain of the geogrid, and changing the length and spacing of the geogrid through the controlled variable method. The results show that the geogrid can limit the horizontal displacement of the soil, balance the earth pressure, and improve the overall stability of the retaining wall. By increasing the length of the geogrid and reducing the distance of the geogrid, the design of the retaining wall is optimized, which has good economic and time benefits.

2013 ◽  
Vol 353-356 ◽  
pp. 312-317
Author(s):  
Ying Yong Li ◽  
Li Zhi Zheng ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Zhi Chao Xue

In order to ensure the security of gravity retaining wall in the high fill subgrade, the design of gravity retaining wall with anchors is proposed,the characteristic of the new wall is that comment anchors are added to the traditional gravity retaining wall,by friction anchors provide lateral pull to the wall so the stability of the new wall is improved. Because of the constraints of anchors, the lateral free deformation is influenced and the soil pressure distribution is very complicated, field tests showed that soil pressure distribution is nonlinear and pressure concentrate in anchoring position. In order to reveal the supporting mechanism of retaining wall and propose the soil pressure formula, the model test of anchor retaining wall is made and numerical simulation is done. The results show that soil pressure appears incresent above the anchor and decreasing below the anchor, the soil pressre also grew larger away from the anchor proximal in the horizontal direction.


2011 ◽  
Vol 52-54 ◽  
pp. 2181-2186
Author(s):  
Guang Zhu Zhou ◽  
Xu Wei ◽  
Chen Yu

This paper is mainly to study earth pressure on Gcrw used as a new kind of supporting structures in the excavation of deep foundation pits in soft soil region. On the basis of the simulation of step by step excavation by using big finite element software Abaqus/CAE and considering three-dimension elastoplastic stress state, the characteristics of different earth pressure are systematically discussed upon practical engineering. By comparing simulation results with calculated results based on calculation formula of Rankine Theory, it can be seen that the earth pressure in active zone is different from theoretic active earth pressure and earth pressure at rest while walls and soil in the gridding are regarded as a whole, which is greater than the former and somewhere similar to the latter, the earth pressure in passive zone is bigger than theoretic value of passive earth pressure, it is the tensive force from partition wall that prevent the front wall from overturning. These conclusions will be helpful for design and construction of new retaining wall.


Gravity retaining wall are structures used to retain the soil by its weight .the stability of such type of walls depend on the magnitude and direction of the horizontal forces exerted by soil . it found that there is many factors affect the value and the acting point of acting. Based on this, a study was conducted to investigate the effect of water table, external vertical loads, sloping of the backfill and the type of the backfill soil. It show that, the value of the horizontal soil pressure increase from147KN/m' on dry soil to about 307 KN/m' as the soil become saturated.also,effect of external loads are studied , and show its increase the total horizontal forces of the soil pressure. Sloping the backfill soil behind the retaining wall also great effect on the earth pressure. The type of the backfill soil behind the retaining wall also investigated and found its effect of the earth forces.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kazuki Maehara ◽  
Akihiro Hamanaka ◽  
Takashi Sasaoka ◽  
Hideki Shimada ◽  
Seiya Sakuma

The demand for specific earth retaining wall methods is increasing along with the advancement and overcrowding of underground space use such as the presence of adjacent structures in an urban area. To cope with this, the method named earth stepped-twin retaining wall is increasingly being applied. However, there is a concern about the workplace if the earth pressure causes a heaving and pressing phenomenon from both ends of the retaining wall in the earth stepped-twin retaining wall. Therefore, we proposed the application of an anchor method that contains the inner and outer walls by using numerical simulation. The effects of the difference in soil properties, the horizontal distance between the outer and inner walls, and the depth of the outer wall embedment on the anchor were investigated. The results of this study show that the wall deflection of the inner wall could improve by adopting the anchor support. Besides, it was found that the inner wall can be efficiently suppressed by adopting the hybrid system with anchors and struts according to the soil properties, horizontal distance, and the depth of the outer wall.


2011 ◽  
Vol 368-373 ◽  
pp. 276-279
Author(s):  
Fei Hua Zheng ◽  
Jin Song Lei ◽  
Wen Zhi Yin

The stability of reticulated shell is a key issue for single-layer reticulated shell. In the paper, a single-layer arch-supported shell structure was analyzed by finite element software MIDAS. The eigenvalue buckling analysis and the geometric nonlinear overall stability analysis with initial imperfection of the model which carried two different load combinations were studied too. At the same time, the influences on the stability of the shell structure were researched. The results showed that the shell structure was sensitive to the initial imperfection. Under different load combinations, the instability of modes and limited capacity of stability are different in the shell structure.


2012 ◽  
Vol 204-208 ◽  
pp. 718-721 ◽  
Author(s):  
Peng Li ◽  
Xiao Song

The traditional formula using for the calculation of Expressway on high embankment of the retaining wall and the earth pressure can not be very good practical. In order to accurately determine the soil pressure calculation of the complex retaining wall in construction stage for guaranteeing the engineering safety, the experiment study on soil pressure is done, and the study on soil pressure monitoring data is also done. Then the valuable conclusions are obtained to facilitate better practical guidance for construction.


2014 ◽  
Vol 672-674 ◽  
pp. 1863-1867
Author(s):  
Jian Qing Wu ◽  
Ying Yong Li ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Qing Yu Meng ◽  
...  

In order to study anchor relaxation of pressure dispersive retaining wall, the numerical simulation model was designed to simulate the retaining wall with single anchor plate. The results showed that the pressure dispersive retaining wall had good overall stability. Anchor Relaxtion had two sudden changes. As a result, the lateral soil pressure near the anchor had been released and the displacement Significantly increased.


2019 ◽  
Vol 4 (2) ◽  
pp. 15
Author(s):  
Nimbalkar ◽  
Pain ◽  
Ahmad ◽  
Chen

An accurate estimation of static and seismic earth pressures is extremely important in geotechnical design. The conventional Coulomb’s approach and Mononobe-Okabe’s approach have been widely used in engineering practice. However, the latter approach provides the linear distribution of seismic earth pressure behind a retaining wall in an approximate way. Therefore, the pseudo-dynamic method can be used to compute the distribution of seismic active earth pressure in a more realistic manner. The effect of wall and soil inertia must be considered for the design of a retaining wall under seismic conditions. The method proposed considers the propagation of shear and primary waves through the backfill soil and the retaining wall due to seismic excitation. The crude estimate of finding the approximate seismic acceleration makes the pseudo-static approach often unreliable to adopt in the stability assessment of retaining walls. The predictions of the active earth pressure using Coulomb theory are not consistent with the laboratory results to the development of arching in the backfill soil. A new method is proposed to compute the active earth pressure acting on the backface of a rigid retaining wall undergoing horizontal translation. The predictions of the proposed method are verified against results of laboratory tests as well as the results from other methods proposed in the past.


2013 ◽  
Vol 671-674 ◽  
pp. 230-234
Author(s):  
Yu Jun Zuo ◽  
De Kang Zhu ◽  
Wan Cheng Zhu

In order to study the supporting of deep surrounding rock with zonal disintegration tendency, the zonal disintegration phenomenon of deep surrounding rock under three supporting forms is analyzed by the ABAQUS finite element software in this paper, and three supporting forms are un-supporting, bolting and grouting, and combined “Bolting and grouting plus Anchor rope” supporting. The results show that the different effects to zonal disintegration under different supporting forms will occur. Supporting can help to restrain the zonal disintegration of the reinforcement part advantageously, and also lower rupture degree of zonal disintegration and reduce the size of rupture zone. Meanwhile, the stability of surrounding rock is improved. But zonal disintegration may occur outside reinforcement part under greater ground stress. The results are great importance to a better understanding of the deep roadway supporting.


Sign in / Sign up

Export Citation Format

Share Document