The Numerical Analysis of Suction Port Position under the Stress and Velocity Field

2013 ◽  
Vol 353-356 ◽  
pp. 3606-3610
Author(s):  
Dui Yuan Li ◽  
Ping Wang ◽  
Wei Long Man

The shaft drilling diameter is up to φ7m, Larger borehole and deepened section make slow drilling problem more and more prominent, which has seriously affected the drilling cost and drilling cycle, thus affecting the exploration and development speed of entire coal mine and the oil field. At present, the improvement of drilling speed and efficiency of φ7m and larger diameter section has become a technical problem needed to be solved. In order to improve the drilling speed of φ7m diameter and larger diameter boreholes, super twin-stage bit is recommended. It has an enlarger drill (φ 4.5m) than average bit using twin-stage structure.,A small guide hole is drilled the first, followed by drilling the borehole. On the other hand, the stratum drilled makes larger free surface to release the ground stress, which will increase ROP, reduce drilling time and quicken the speed of well completion.Starting from the mathematical model of stress field and velocity field, this paper establishes the unit models of bottom-hole stress field and velocity field. Through the finite element analysis, it analyzes influence of different slurry suction port position on rock breaking efficiency, which has high reference value for the design of super twin-stage drill bit.

2015 ◽  
Vol 733 ◽  
pp. 17-22
Author(s):  
Yang Liu ◽  
Zhuo Pu He ◽  
Qi Ma ◽  
Yu Hang Yu

In order to improve the drilling speed, lower the costs of development and solve the challenge of economies of scale development in sulige gas field, the key techniques research on long horizontal section of horizontal well drilling speed are carried out. Through analyzing the well drilling and geological data in study area, and supplemented by the feedback of measured bottom hole parameters provided by underground engineering parameters measuring instrument, the key factors restricting the drilling speed are found out and finally developed a series of optimum fast drilling technologies of horizontal wells, including exploitation geology engineering technique, strengthen the control of wellbore trajectory, optimize the design of the drill bit and BHA and intensify the drilling parameters. These technologies have a high reference value to improve the ROP of horizontal well in sulige gas field.


2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jianwei Xing ◽  
Gangtie Zheng

For evaluating the stress gradient, a mathematical technique based on the stress field of lower-orderC0elements is developed in this paper. With nodal stress results and location information, an overdetermined and inconsistent equation of stress gradient is established and the minimum norm least squares solution is obtained by the Moore-Penrose pseudoinverse. This technique can be applied to any element type in comparison with the superconvergent patch (SCP) recovery for the stress gradient, which requires the quadratic elements at least and has to invert the Jacobi and Hessian matrices. The accuracy and validity of the presented method are demonstrated by two examples, especially its merit of achieving high accuracy with lower-order linearC0elements. This method can be conveniently introduced into the general finite element analysis programs as a postprocessing module.


2012 ◽  
Vol 204-208 ◽  
pp. 2167-2171
Author(s):  
Yu Lan Wang ◽  
Guo Dong Zheng

Finite element analysis and calculation are held on the superstructure of the auxiliary channel bridge at the right branching of Beijiang Bridge for a short condition and the service phase. The theoretical launching force is calculated and amended in construction. The results show that when considering load effects such as the dead loads of box girders, the live loads of decks and the pre-stressed secondary forces, the eccentric stress state will appear on the webs, and the steel stress produced by shrinkage and creep of concrete can not be ignored. So the launching force must be amended during the construction process. These conclusions have a certain reference value on the bridge design and construction.


Author(s):  
F. Lu ◽  
C. Zhang ◽  
J. Sun ◽  
J.X. Tian ◽  
M. Liu ◽  
...  

In order to improve working efficiency of the tunneling process and extend working life of disc cutter, explore the impact of cutter spacing and loading for the cutter rock-breaking effect. With the theory of rock crushing, Based on the finite element analysis software ABAQUS, the process of disc cutter breaking rock is simulated, considering the adjacent cutters sequential constraints, then, to make sure two cutter space with the method of SE in experiment.The simulation results showed that the optimal cutter spacings were both about 80mm in the same loading and the sequentially loading, but the rock-breaking effect of sequentially loading is better than the same loading. The experimental data showed that the minimum specific energy of rock breaking is appeared cutter spacing between 80mm and 90mm. Thus, the correctness and rationality of the simulation was verified. The study is good for understanding the rock-breaking mechanism of double disc cutter and has a certain promoting value to optimize TBM cutter system.Keywords:TBM, rock fragmentation, ABAQUS, cutter spacing, sequentially cutting


1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.


2012 ◽  
Vol 538-541 ◽  
pp. 3249-3252
Author(s):  
Yang Gao ◽  
Lu Yu Huang ◽  
He Zhang

By using the finite element analysis software ANSYS, this article presented the structure stress and displacement of a type of electrical dust precipitator on a variety of loads effect, after the main steel structures of the model was built according to the frontal solution method, optimization design of model's main steel structures had been done. The modeling and the computational Method has been proved the reasonableness of precision, and can be further used for structure analysis and so it has reference value for optimization design of other electrical precipitator steel structures.


1959 ◽  
Vol 26 (4) ◽  
pp. 599-602
Author(s):  
A. W. Jenike ◽  
R. T. Shield

Abstract Principles developed for rigid-plastic solids exhibiting Coulomb’s properties are adapted to the analysis of flow beyond original failure. A variable yield function is proposed to account for the changes of cohesion during flow and equations are evolved for the stress field in two dimensions. It is shown that, while in the stress field an effective angle of friction larger than the actual angle of friction is mandatory for these materials, in the velocity field the materials can be assumed incompressible.


2011 ◽  
Vol 121-126 ◽  
pp. 3431-3436
Author(s):  
Guo Quan Yang ◽  
You Qun Zhao ◽  
Jun Yan Li

This paper discussed the theoretical analysis and engineering improvement test verification of the crack problem in the back van of the vehicle. Causes that may result in the crack problem are firstly analyzed and then determined by the finite element analysis. Improvement are given and proved to be effective by the test verification of an improved vehicle. The method used in this paper will contribute to the analysis and solution of the crack problems in some parts of the vehicle and has reference value in engineering application.


Sign in / Sign up

Export Citation Format

Share Document