Solutions for Non-Newtonian Flow Into Elliptical Openings

1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.

2013 ◽  
Vol 554-557 ◽  
pp. 776-786 ◽  
Author(s):  
Sepinood Torabzadeh Khorasani ◽  
Henry Valberg

This study investigates the velocity fields that are descriptive for the forward, backward and friction assisted extrusion of axisymmetric rods. The Avitzur theory was used to calculate the velocity field and strain rate in extrusion of Al alloys. Several simulations have also been performed by using finite element analysis (FEA) with DEFORM 2D, in order to find the admissible velocity field for different conditions of friction including high and low friction. The results from FEA and theory of axisymmetric extrusion are compared to see if there is good agreement. The correlation between the data obtained by theory and FEA is discussed.


Author(s):  
Oscar O. Rodriguez ◽  
Arturo A. Fuentes ◽  
Constantine Tarawneh ◽  
Robert E. Jones

Thermoplastic elastomers (TPE’s) are increasingly being used in rail service in load damping applications. They are superior to traditional elastomers primarily in their ease of fabrication. Like traditional elastomers they offer benefits including reduction in noise emissions and improved wear resistance in metal components that are in contact with such parts in the railcar suspension system. However, viscoelastic materials, such as the railroad bearing thermoplastic elastomer suspension element (or elastomeric pad), are known to develop self-heating (hysteresis) under cyclic loading, which can lead to undesirable consequences. Quantifying the hysteresis heating of the pad during operation is therefore essential to predict its dynamic response and structural integrity, as well as, to predict and understand the heat transfer paths from bearings into the truck assembly and other contacting components. This study investigates the internal heat generation in the suspension pad and its impact on the complete bearing assembly dynamics and thermal profile. Specifically, this paper presents an experimentally validated finite element thermal model of the elastomeric pad and its internal heat generation. The steady-state and transient-state temperature profiles produced by hysteresis heating of the elastomer pad are developed through a series of experiments and finite element analysis. The hysteresis heating is induced by the internal heat generation, which is a function of the loss modulus, strain, and frequency. Based on previous experimental studies, estimations of internally generated heat were obtained. The calculations show that the internal heat generation is impacted by temperature and frequency. At higher frequencies, the internally generated heat is significantly greater compared to lower frequencies, and at higher temperatures, the internally generated heat is significantly less compared to lower temperatures. However, during service operation, exposure of the suspension pad to higher loading frequencies above 10 Hz is less likely to occur. Therefore, internal heat generation values that have a significant impact on the suspension pad steady-state temperature are less likely to be reached. The commercial software package ALGOR 20.3TM is used to conduct the thermal finite element analysis. Different internal heating scenarios are simulated with the purpose of obtaining the bearing suspension element temperature distribution during normal and abnormal conditions. The results presented in this paper can be used in the future to acquire temperature distribution maps of complete bearing assemblies in service conditions and enable a refined model for the evolution of bearing temperature during operation.


2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


1990 ◽  
Vol 112 (2) ◽  
pp. 398-403 ◽  
Author(s):  
G. Bayada ◽  
M. Chambat ◽  
M. El Alaoui

In this paper gaseous cavitation in steady-state and transient lubrication problems is considered. Both conventional numerical procedures, associated with the Reynolds cavitation model, and a new finite element analysis for implementation of the Jakobson-Floberg model are presented. Applications to circumferentially supplied bearings and to seals are given.


2009 ◽  
Vol 87-88 ◽  
pp. 518-523 ◽  
Author(s):  
Jing Li ◽  
Yan He ◽  
Zhen Chao Chen

Based on the Adina finite element analysis software, 3D axisymmetric finite element analysis model of the 205/75R15 PCR tire was established, the steady temperature field of rolling tire was simulated, and the thermal distribution colored cloud diagram of steady-state temperature field of 3D rolling tire which directly shows the temperature distribution of each section of tire was analyzed to offer certain guidance to the improvement of tire structure and rubber formula.


Sign in / Sign up

Export Citation Format

Share Document