Experimental Study on the Shearing Property of Equal Strength Recycled Coarse Aggregate Concrete

2013 ◽  
Vol 357-360 ◽  
pp. 1420-1427 ◽  
Author(s):  
Zhi Heng Deng ◽  
Yi Liao ◽  
Chao Lou Meng ◽  
Hai Feng Yang

For the purpose of studying the difference between recycled concrete and ordinary concrete on shearing property under the circumstance of equal strength, nine recycled concrete beams, which have equal altitude and varying width, have been produced by using different replacement rates of 0%, 50% and 100% respectively to test their shear performance. The differences between recycled concrete and ordinary concrete on shearing strength, shearing strain and constitutive relation were analyzed in this paper. The study indicates that with the same compressive strength, there is only a slight difference between recycled concrete and ordinary concrete on shearing strength. The shearing strength of the recycled concrete is similar to the tensile strength of the ordinary concrete. Recycled concretes peak value increases as shearing strength increases. The stress-strain curve of recycled concrete is similar to that of the ordinary concrete. Its shear modulus increases when shearing strength increases.

2013 ◽  
Vol 357-360 ◽  
pp. 1415-1419 ◽  
Author(s):  
Zhi Heng Deng ◽  
Li Chen ◽  
Jian Qian ◽  
Chao Lou Meng

In order to study the mechanical properties of recycled concrete with the same strength, three kinds of recycled concrete have been made which their intensities reached C25, C30, C35 at the recycled coarse aggregate replacement ratios (0%, 50%, 100%), and severally completed the stress-strain curve test on the same strength of recycled concrete, separately analyzed the variance about failure pattern and peak strain, elastic modulus that all belonged to recycled concrete under the condition of the same strength. Studies have shown that the overall shape of recycled concretes stress-strain curves is similar to normal concretes under the same strength, and the difference is small, modulus of elasticity decreases with the increase of recycled coarse aggregate replacement ratio, while the peak strain basicly remains unchanged. Their curves can be used two stages respectively and also be represented by three fitting polynomial and rational expression, their descent stages steepened gradually with the increase of recycled coarse aggregate replacement rate.


2011 ◽  
Vol 243-249 ◽  
pp. 4596-4601
Author(s):  
Ming Quan Sun ◽  
Shi Feng Yang

Basing on triaxial experiments, the paper conducts the research to Cemented Sand and Gravel constitutive model. Using virtual rigid spring method, the Cemented Sand and Gravel constitutive model with considering the softening characteristics of material is established, and parameters needed are determined, the model establishes the foundation of non-linear analysis of Cemented Sand and Gravel structure. Mechanical properties and constitutive model study of Cemented Sand and Gravel is key to Cemented Sand and Gravel faced eath-rockfill dam. Basing the Mechanical properties triaxial experiment of the material, the paper gives further discussion on the constitutive model of Cemented Sand and Gravel. From the results of the triaxial test, when the cemented material content is smaller than 20kg/m3, the stress strain curve agrees quite well with hyperbolic law to which the normal gravel test curve also obeys, the exception is the increase of shearing strength. If the cemented material content is more than 30kg/m3, there is a peak value on the stress strain curve, the curve (before peak value) shows that axial strain increase with deviatoric stress with the increment gradually changing slowly, i.e. the stress strain curve has obvious nonlinear feature. the curve peaks value at the axial strain =2%, the stress strain curve present softening pattern that deviatoric stress decreases with the strain increase if continuous applying axial load. When axial strain lies between 2% and 6%, the shearing strength of samples decreases rapidly, after this interval, the shear strength tends to the stable value in the final. It is core problem the paper try to solve that how to describe Cemented Sand and Gravel constitutive model.


2017 ◽  
Vol 10 (3) ◽  
pp. 547-567 ◽  
Author(s):  
D. A. GUJEL ◽  
C. S. KAZMIERCZAK ◽  
J. R. MASUERO

ABSTRACT This work analyses the methodology "A" (item A.4) employed by the Brazilian Standard ABNT 8522 (ABNT, 2008) for determining the stress-strain behavior of cylindrical specimens of concrete, presenting considerations about possible enhancements aiming it use for concretes with recycled aggregates with automatic test equipment. The methodology specified by the Brazilian Standard presents methodological issues that brings distortions in obtaining the stress-strain curve, as the use of a very limited number of sampling points and by inducing micro cracks and fluency in the elastic behavior of the material due to the use of steady stress levels in the test. The use of a base stress of 0.5 MPa is too low for modern high load test machines designed do high strength concrete test. The work presents a discussion over these subjects, and a proposal of a modified test procedure to avoid such situations.


Author(s):  
Yang Li ◽  
Weiwei Zhang ◽  
Shaotao Gong ◽  
Lingkang Ji ◽  
Chunyong Huo ◽  
...  

A series research programs and industrial trials of X100 linepipe have been launched by CNPC so as to build an X100 trial in China for long-distance gas pipeline in the coming years. In present paper, tests have been conducted on 20.6mm×1016mm diameter Grade X100 linepipe. The microstructures, tension properties will be presented. In order to investigate the influence of anti-corrosion coating process on the performance of pipe, strain aging tests in lab have been carried out as well. It is found that testing method, tensile specimen size and sampling location had a noticeable effect on the testing results. The difference is also observed between the flattened strap specimen and round bar. The influence of time, temperature and pre-strain amount of aging tests on the shape of S-S (stress-strain) curve, tension tests results, yield ratio of pipes are presented as well.


2010 ◽  
Vol 163-167 ◽  
pp. 1762-1767 ◽  
Author(s):  
Xiang Liu ◽  
Jiang Tao Kong

According to the contrast test of LC30, LC40 lightweight aggregate concrete and C30, C40 common concrete , the text researched the mechanical property of lightweight aggregate concrete and ordinary concrete in the same strength grade and obtained the regularity of stress-strain curve of lightweight aggregate concrete in different strength grade. Then we contrasted the experimental results and planning model, analysed the difference, and suggested that the standards should improve the descent stage of the stress-strain curve of lightweight aggregate concrete combined with correlative experiments data, and give the equation of the descent stage of stress-strain curves. Concrete material in axial compression is the basic physical mechanical performance of concrete material, and is the main basis for researching bearing capacity and deformation of concrete construction. The stress-strain relationship is all-around macroscopic reaction of basal compressive property . There have been many experiments work about the stress-strain relationship of lightweight aggregate concrete at home and abroad , and found the peak strain of lightweight aggregate concrete is higher than that of ordinary concrete in the context of same peak stress .In this paper, on the basis of experimental investigations of lightweight aggregate concrete , aim at the stress-strain relationship ,we have take comparison experiment about LC30,LC40 lightweight aggregate concrete and C30,C40 ordinary concrete , and sort out stress-strain curve under the condition of the shaft center being compressed, so get the average tress-strain curve of LC30,LC40 lightweight aggregate concrete , and analyse the curve.


Author(s):  
Kensuke Nagai ◽  
Yasuhiro Shinohara ◽  
Shinya Sakamoto ◽  
Eiji Tsuru ◽  
Hitoshi Asahi ◽  
...  

To suppress the appearance of Lu¨ders strain and to decrease yield to tensile strength ratio in the L-direction (longitudinal direction), as well as the C-direction (circumferential direction), have been more important for strain-based design. In this study, conventional UOE and ERW pipes were examined in terms of tensile properties in both directions. In the case of UOE pipes, yield point was clearly observed on the stress-strain curve in the C-direction. However, stress-strain curves in the L-direction showed the round-house type. This difference became prominent after heat treatment for the anti-corrosion. Namely, clear Lu¨ders strain appeared in the C-direction at a lower aging temperature compared with that in the L-direction. On the other hand, contrasting results were obtained in the case for ERW pipes. Thus far, it’s been thought that the difference between UOE and ERW pipe was caused by the direction of final strain during the pipe forming process. There are also differences in the occurrence of Lu¨ders strain between each grade. A stress-strain curve maintained the round-house type in X100 grade pipe after the heat treatment at 240°C for five minutes; however, X70 grade pipe showed the stress-strain curve in the L-direction with Lu¨ders strain after the heat treatment at the same temperature.


2011 ◽  
Vol 264-265 ◽  
pp. 862-870
Author(s):  
G.H. Majzoobi ◽  
S. Faraj Zadeh Khosroshahi ◽  
H. Beik Mohammadloo

Identification of the constants of material models is always a concern. In the present work, a combined experimental, numerical and optimization technique is employed to determine the constants of Zerilli-Armstrong model. The experiments are conducted on a compressive Hopkinson bar, the simulations are performed using finite element method and optimization is carried out using genetic algorithm. In the method adopted here, there is no need for experimental stress-strain curve which is always accompanied by restricting phenomenon such as necking in tension and bulging in compression. Instead of stress-strain curve, the difference between the post-deformation profiles of specimens obtained from experiment and the numerical simulations is adopted as the objective function for optimization purposes. The results suggest that the approach introduced in this work can substitute costly instrumentations normally needed for obtaining stress-strain curves at high strain rates and elevated temperature.


2021 ◽  
Vol 11 (22) ◽  
pp. 10550
Author(s):  
Haicheng Niu ◽  
Lei Wang ◽  
Jianhua Li ◽  
Jiakun Ji

Research on the utilization of recycled concrete in civil engineering applications is gaining popularity world-wide due to the increased efforts to promote preservation of the environment and sustainable development. Recycled concrete is, however, presently still limited to nonstructural applications. This is due to the poor mechanical properties of recycled concrete, which make it difficult to cope with complex mechanical environments. Therefore, an experimental work is presented to investigate the mechanical behaviour of recycled concrete, focusing on the cube, flexural, and uniaxial compressive mechanical properties of steel-polyvinyl alcohol fibre-doped specimens. The test results showed that the compressive strength and the flexural strength of the recycled concrete increased by 6.0% and 55.2%, respectively, when steel fibre was single-incorporated. The cubic compressive strength of the recycled concrete decreased by 14.1% when polyvinyl alcohol fibre was single-incorporated, but there was a 47.9% increase in the flexural strength of recycled concrete. Based on these tests, the elastic modulus, the Poisson’s ratio, and the uniaxial compression toughness were digitised to derive mathematical expressions that provided a theoretical understanding of the mechanical properties of steel-polyvinyl alcohol fibre-reinforced recycled concrete. Moreover, combining the characteristics of the uniaxial compressive stress–strain curve of fibre-reinforced recycled concrete, an equation for the uniaxial compressive stress–strain curve of recycled concrete associated with the fibre characteristic value was established, which agreed well with the test results.


2002 ◽  
Vol 92 (1) ◽  
pp. 362-371 ◽  
Author(s):  
Paolo P. Provenzano ◽  
Dennis Heisey ◽  
Kei Hayashi ◽  
Roderic Lakes ◽  
Ray Vanderby

Subfailure damage in ligaments was evaluated macroscopically from a structural perspective (referring to the entire ligament as a structure) and microscopically from a cellular perspective. Freshly harvested rat medial collateral ligaments (MCLs) were used as a model in ex vivo experiments. Ligaments were preloaded with 0.1 N to establish a consistent point of reference for length (and strain) measurements. Ligament structural damage was characterized by nonrecoverable difference in tissue length after a subfailure stretch. The tissue's mechanical properties (via stress vs. strain curves measured from a preloaded state) after a single subfailure stretch were also evaluated ( n = 6 pairs with a different stretch magnitude applied to each stretched ligament). Regions containing necrotic cells were used to characterize cellular damage after a single stretch. It should be noted that the number of damaged cells was not quantified and the difference between cellular area and area of fluorescence is not known. Structural and cellular damage were represented and compared as functions of subfailure MCL strains. Statistical analysis indicated that the onset of structural damage occurs at 5.14% strain (referenced from a preloaded length). Subfailure strains above the damage threshold changed the shape of the MCL stress-strain curve by elongating the toe region (i.e., increasing laxity) as well as decreasing the tangential modulus and ultimate stress. Cellular damage was induced at ligament strains significantly below the structural damage threshold. This cellular damage is likely to be part of the natural healing process in mildly sprained ligaments.


1939 ◽  
Vol 12 (3) ◽  
pp. 518-519 ◽  
Author(s):  
V. Hauk ◽  
W. Neumann

Abstract It has already been pointed out elsewhere (Monatshefte für Chemie 72, 32 (1938); Rubber Chem. Tech. 12, 64(1939)) that the difference between the adiabatic and isothermal stress-strain curves of rubber is too great to be explained on a thermodynamic basis alone. It was suggested that the position of the adiabatic curves might be governed by the fact that the rate of stretching itself has a decisive effect on the behavior of the chains of molecules during stretching. To throw light on this phenomenon, stress-strain curves were obtained, by means of the stretching apparatus already described in the paper mentioned, at various rates of elongation which still fell within the range of adiabatic stretching. The operation was carried out in such a way that a chronometer started electrically when the rubber began to elongate, and stopped again when the rubber reached an elongation of 450 per cent. With the aid of this contrivance, stress-strain curves were obtained at rates corresponding to 0.68, 2.5, 5.7 and 9.1 seconds' elapsed time for the stretching. For comparison, an isotherm was obtained by loading rubber strips of the same dimensions with various weights. A vulcanizate containing 2 per cent of combined sulfur was used as experimental material. The temperature was 13° C. The results of these measurements are shown graphically in Fig. 1. It may be seen that the adiabatic curve corresponding to the highest rate of elongation has the least steep ascent, i.e., at the highest rate of elongation the stress is greatest at a given elongation. With increase in the time of stretching, the curves approach nearer and nearer to the isothermal stress-strain curve. This would seem to prove that the rate of elongation plays an important part, wholly independent of any thermodynamic effects. Perhaps during rapid stretching there is actual rupture of chains which are still coiled and which mutually obstruct the smooth course of the stress-strain curve. It can also be seen from the position of the curves that the decisive effect shown by the time factor is of the order of seconds, since the difference between the curves corresponding to 0.68 and 2.5 seconds is very small, whereas the difference between the curves corresponding to 2.5 and 5.7 seconds appears to be considerable.


Sign in / Sign up

Export Citation Format

Share Document