Spatial-Temporal Analysis on Summer Heat Island Effect Based on Tests - With the Southeastern of Wuhan as an Example

2013 ◽  
Vol 361-363 ◽  
pp. 499-503
Author(s):  
Xue Song Li ◽  
Xin Yu Tao ◽  
Su Li Zhang

The urban heat island phenomenon is one of the important problems faced by the metropolitan environment in hot-summer and cold-winter areas. In order to conduct truthful and in-depth analysis on this phenomenon, this study covers temperature data acquisition and a series of data collation and analysis conducted with the mobile testing method, more actually reflects the heat island spatial-temporal changes from the central area of Wuhan in Summer to the urban fringe, analyzes the urban morphology, urban underlying surface characteristics, and impacts of human factors and microclimate, and explores the feasible quantification basis for urban design and planning.

2013 ◽  
Vol 409-410 ◽  
pp. 612-616
Author(s):  
Xue Song Li ◽  
Hong Yi Li ◽  
Su Li Zhang

The urban heat island phenomenon is one of the important problems faced by the metropolitan environment in hot-summer and cold-winter areas. In order to conduct truthful and in-depth analysis on this phenomenon, this study covers temperature data acquisition and a series of data collation and analysis conducted with the mobile testing method, more actually reflects the heat island spatial-temporal changes from the central area of Wuhan in Winter to the urban fringe, analyzes the urban morphology, urban underlying surface characteristics, and impacts of human factors and microclimate, and explores the feasible quantification basis for urban design and planning.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5819
Author(s):  
Alessandra Battisti

This paper deals with the interactions between biophysical and microclimatic factors on the one hand with, on the other, the urban morphology of intermediate urban open spaces, the relationship between environmental and bioclimatic thermal comfort, and the implementation of innovative materials and the use of greenery, aimed at the users’ well-being. In particular, the thermal comfort of the open spaces of the consolidated fabrics of the city of Rome is studied, by carrying out simulations of cooling strategies relating to two scenarios applied to Piazza Bainsizza. The first scenario involves the use of cool materials for roofs, cladding surfaces, and pavement, while the second scenario, in addition to the cool materials employed in the first scenario, also includes the use of greenery and permeable green surfaces. The research was performed using summer and winter microclimatic simulations of the CFD (ENVI-met v. 3.1) type, in order to determine the different influences of the materials with cold colors, trees, and vegetated surfaces on the thermal comfort of the urban morphology itself. Meanwhile, the comfort assessment was determined through the physiological equivalent temperature (PET) calculated with the RayMan program. The first scenario, with the use of cool materials, improves summer conditions and reduces the urban heat island effect but does not eliminate thermal discomfort due to the lack of shaded surfaces and vegetation. The second scenario, where material renovations is matched with vegetation improvements, has a slightly bad effect on winter conditions but drastically ameliorates the summer situation, both for direct users and, thanks to the strong reduction of the urban heat island effect, to urban inhabitants as a whole.


2021 ◽  
Vol 13 (7) ◽  
pp. 1396
Author(s):  
Darshana Athukorala ◽  
Yuji Murayama

An urban heat island (UHI) is a significant anthropogenic modification of urban land surfaces, and its geospatial pattern can increase the intensity of the heatwave effects. The complex mechanisms and interactivity of the land surface temperature in urban areas are still being examined. The urban–rural gradient analysis serves as a unique natural opportunity to identify and mitigate ecological worsening. Using Landsat Thematic Mapper (TM), Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), Land Surface Temperature (LST) data in 2000, 2010, and 2019, we examined the spatial difference in daytime and nighttime LST trends along the urban–rural gradient in Greater Cairo, Egypt. Google Earth Engine (GEE) and machine learning techniques were employed to conduct the spatio-temporal analysis. The analysis results revealed that impervious surfaces (ISs) increased significantly from 564.14 km2 in 2000 to 869.35 km2 in 2019 in Greater Cairo. The size, aggregation, and complexity of patches of ISs, green space (GS), and bare land (BL) showed a strong correlation with the mean LST. The average urban–rural difference in mean LST was −3.59 °C in the daytime and 2.33 °C in the nighttime. In the daytime, Greater Cairo displayed the cool island effect, but in the nighttime, it showed the urban heat island effect. We estimated that dynamic human activities based on the urban structure are causing the spatial difference in the LST distribution between the day and night. The urban–rural gradient analysis indicated that this phenomenon became stronger from 2000 to 2019. Considering the drastic changes in the spatial patterns and the density of IS, GS, and BL, urban planners are urged to take immediate steps to mitigate increasing surface UHI; otherwise, urban dwellers might suffer from the severe effects of heatwaves.


Author(s):  
Qijiao Xie ◽  
Jing Li

As a nature-based solution, development of urban blue-green spaces is widely accepted for mitigating the urban heat island (UHI) effect. It is of great significance to determine the main driving factors of the park cool island (PCI) effect for optimizing park layout and achieving a maximum cooling benefit of urban parks. However, there have been obviously controversial conclusions in previous studies due to varied case contexts. This study was conducted in Wuhan, a city with high water coverage, which has significant differences in context with the previous case cities. The PCI intensity and its correlation with park characteristics were investigated based on remote sensing data. The results indicated that 36 out of 40 urban parks expressed a PCI effect, with a PCI intensity of 0.08~7.29 °C. As expected, larger parks with enough width had stronger PCI intensity. An increased density of hardened elements in a park could significantly weaken PCI effect. Noticeably, in this study, water bodies in a park contributed the most to the PCI effect of urban parks, while the vegetated areas showed a negative impact on the PCI intensity. It implied that in a context with higher water coverage, the cooling effect of vegetation was weakened or even masked by water bodies, due to the interaction effect of different variables on PCI intensity.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


Sign in / Sign up

Export Citation Format

Share Document