Study on Correlation between Urban Development and Air Pollution Based on Artificial Neural Network

2013 ◽  
Vol 361-363 ◽  
pp. 860-863
Author(s):  
Jian Ping Li ◽  
Qiao Song ◽  
Hai Ying Yang ◽  
Han Ming Duan

The paper presents a method of researching the impact of urban development on air quality on the basis of artificial neural network (ANN). Statistical data in a monitoring period constitute a sample which contains monitoring values of environmental impact factors and air pollution indicators. Several samples are employed to train the ANN, and the mapping relationship between environmental impact factors and air pollution indicators is established through the trained ANN. The impact degree of each environmental impact factor on each air pollution indicator can be obtained by using the connection weights of the trained ANN. The case study illustrates the feasibility of the method mentioned in the paper which explores a new idea to the study of environmental impact of urban development.

2014 ◽  
Vol 989-994 ◽  
pp. 1814-1820 ◽  
Author(s):  
Ai Jun Shao ◽  
Qing Xin Meng ◽  
Shi Wen Wang ◽  
Ying Liu

Based on predictions of the mine inflow of water and the complexity of influential factors, a method of BP neural network is put forward for mine inrush water prediction in this paper. We chose proper impact factors and establish non-linear artificial neural network prediction model after analyzed the impact factors of mine water inflow in Shandong Heiwang iron, and also made one prediction with normal mine water inflow during the iron mining operation. It turned out that the result can match with the actual prediction data, which make it possible to predict the mine water inflow with the prediction of Artificial Neural Network.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


2021 ◽  
Author(s):  
Sascha Flaig ◽  
Timothy Praditia ◽  
Alexander Kissinger ◽  
Ulrich Lang ◽  
Sergey Oladyshkin ◽  
...  

<p>In order to prevent possible negative impacts of water abstraction in an ecologically sensitive moor south of Munich (Germany), a “predictive control” scheme is in place. We design an artificial neural network (ANN) to provide predictions of moor water levels and to separate hydrological from anthropogenic effects. As the moor is a dynamic system, we adopt the „Long short-term memory“ architecture.</p><p>To find the best LSTM setup, we train, test and compare LSTMs with two different structures: (1) the non-recurrent one-to-one structure, where the series of inputs are accumulated and fed into the LSTM; and (2) the recurrent many-to-many structure, where inputs gradually enter the LSTM (including LSTM forecasts from previous forecast time steps). The outputs of our LSTMs then feed into a readout layer that converts the hidden states into water level predictions. We hypothesize that the recurrent structure is the better structure because it better resembles the typical structure of differential equations for dynamic systems, as they would usually be used for hydro(geo)logical systems. We evaluate the comparison with the mean squared error as test metric, and conclude that the recurrent many-to-many LSTM performs better for the analyzed complex situations. It also produces plausible predictions with reasonable accuracy for seven days prediction horizon.</p><p>Furthermore, we analyze the impact of preprocessing meteorological data to evapotranspiration data using typical ETA models. Inserting knowledge into the LSTM in the form of ETA models (rather than implicitly having the LSTM learn the ETA relations) leads to superior prediction results. This finding aligns well with current ideas on physically-inspired machine learning.</p><p>As an additional validation step, we investigate whether our ANN is able to correctly identify both anthropogenic and natural influences and their interaction. To this end, we investigate two comparable pumping events under different meteorological conditions. Results indicate that all individual and combined influences of input parameters on water levels can be represented well. The neural networks recognize correctly that the predominant precipitation and lower evapotranspiration during one pumping event leads to a lower decrease of the hydrograph.</p><p>To further demonstrate the capability of the trained neural network, scenarios of pumping events are created and simulated.</p><p>In conclusion, we show that more robust and accurate predictions of moor water levels can be obtained if available physical knowledge of the modeled system is used to design and train the neural network. The artificial neural network can be a useful instrument to assess the impact of water abstraction by quantifying the anthropogenic influence.</p>


2015 ◽  
Vol 16 (SE) ◽  
pp. 171-180
Author(s):  
Ahmad Mousavian ◽  
Hady Zarei Mahmodabady ◽  
Aboutaleb Ghadami Jadval Ghadam

Air pollution is one of the most important environmental issues that annual causes to mortality large number of people around the world. So, investigating, measuring, and predicting the concentrations of different pollutants in various areas play an important role in preventing the production of this pollutant sand planning to reduce them by people and relevant authorities. One of the new models that play an important role in measuring and predicting pollution is artificial neural network or regression methods. Therefore, this study is trying to predict air pollution in Yasouj by using artificial neural network in 2014. Because the evidences showed that Yasouj due to uncontrolled growth of industrial and urban transport is subject to various air pollutants such as carbon monoxide and particulate matter. Overall, the results of the assessment and prediction of concentration of pollutants of Yasouj by artificial neural network showed that sigmoid transfer function to the hyperbolic tangent function is more efficient in measuring the concentration of pollutants.  


2016 ◽  
Vol 26 (3) ◽  
pp. 347-354 ◽  
Author(s):  
Tian-hu Zhang ◽  
Xue-yi You

The inverse process of computational fluid dynamics was used to explore the expected indoor environment with the preset objectives. An inverse design method integrating genetic algorithm and self-updating artificial neural network is presented. To reduce the computational cost and eliminate the impact of prediction error of artificial neural network, a self-updating artificial neural network is proposed to realize the self-adaption of computational fluid dynamics database, where all the design objectives of solutions are obtained by computational fluid dynamics instead of artificial neural network. The proposed method was applied to the inverse design of an MD-82 aircraft cabin. The result shows that the performance of artificial neural network is improved with the increase of computational fluid dynamics database. When the number of computational fluid dynamics cases is more than 80, the success rate of artificial neural network increases to more than 40%. Comparing to genetic algorithm and computational fluid dynamics, the proposed hybrid method reduces about 53% of the computational cost. The pseudo solutions are avoided when the self-updating artificial neural network is adopted. In addition, the number of computational fluid dynamics cases is determined automatically, and the requirement of human adjustment is avoided.


Sign in / Sign up

Export Citation Format

Share Document