The Study of Water-Sediment Two Phase Flow Field Measurement Based on Particle Image Velocimetry

2013 ◽  
Vol 368-370 ◽  
pp. 302-310
Author(s):  
Bo Chen

Internal flow field of water-sediment two phase flow was hardly observed by PIV system, due to poor light transmittance. To improve this situation, the glass particle was used in experiment instead of sediment particle. According to the experiment results, the light transmittance of the mixture of glass beads and water was better than the mixture of sediment and water; so the relatively clear internal image of the two-phase flow could be obtained by PIV system. According to the experiment, the glass beads movement was similar to sediment in water.

2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


Author(s):  
Ramin Zadghaffari ◽  
Jafarsadegh Moghaddas ◽  
Johan Revstedt

An agitated two-phase flow is studied numerically and experimentally in a mixing vessel agitated with two six-blade Rushton turbines. In Computational Fluid Dynamics (CFD), the full Eulerian multiphase approach coupled with the standard turbulence model is performed to deal with two-phase flow. The impeller rotation was modelled by the Multiple Reference Frame (MRF) approach. The simulation was used to investigate the flow field, power and mixing time in single and two-phase cases. The results of the calculations have been verified with the data that was measured by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) technique. The predicted results show good agreement with the experimental data. The computational model presented in this study could be useful for explaining the two-phase flow patterns on the mixing process and extending the applications of multiphase stirred reactors.


2004 ◽  
Author(s):  
Gary Luke ◽  
Mark Eagar ◽  
Michael Sears ◽  
Scott Felt ◽  
Bob Prozan

1996 ◽  
Vol 464 ◽  
Author(s):  
E. H. Kawamoto ◽  
Po-Zen Wong

ABSTRACTWe have carried out x-ray radiography and computed tomography (CT) to study two-phase flow in 3-D porous media. Air-brine displacement was imaged for drainage and imbibition experiments in a vertical column of glass beads. By correlating water saturation Sw with resistance R, we find that there is a threshold saturation S* ≈ 0.2, above which R(SW) ∼ Sw−2, in agreement with the empirical Archie relation. This holds true for both drainage and imbibition with littlehysteresis, provided that Sw remains above S*. Should Sw drop below S* during drainage, R(Sw) rises above the Archie prediction, exhibiting strong hysteresis upon reimbibition. This behavior suggests a transition in the connectivity of the water phase near S*, possibly due to percolation effects.


Author(s):  
Licheng Sun ◽  
Kaichiro Mishima

2092 data of two-phase flow pressure drop were collected from 18 published papers of which the working fluids include R123, R134a, R22, R236ea, R245fa, R404a, R407C, R410a, R507, CO2, water and air. The hydraulic diameter ranges from 0.506 to 12mm; Relo from 10 to 37000, and Rego from 3 to 4×105. 11 correlations and models for calculating the two-phase frictional pressure drop were evaluated based upon these data. The results show that the accuracy of the Lockhart-Martinelli method, Mishima and Hibiki correlation, Zhang and Mishima correlation and Lee and Mudawar correalion in the laminar region is very close to each other, while the Muller-Steinhagen and Heck correlation is the best among the evaluated correlations in the turbulent region. A modified Chisholm correlation was proposed, which is better than all of the evaluated correlations in the turbulent region and its mean relative error is about 29%. For refrigerants only, the new correlation and Muller-Steinhagen and Heck correlation are very close to each other and give better agreement than the other evaluated correlations.


Author(s):  
Jean-Luc Riverin ◽  
Michel J. Pettigrew

Severe in-plane vibrations were observed in a series of 20-mm dia. PVC vertical U-tubes of different elbow geometries subjected to air-water internal flow. An experimental study was undertaken to investigate the excitation mechanism. Vibration response, excitation forces and fluctuating properties of two-phase flow were measured over a wide range of flow conditions. The experimental results show that the observed vibrations are due to a resonance phenomenon between periodic momentum flux fluctuations of two-phase flow and the first modes of U-tubes. The excitation forces consist of a combination of narrow-band and periodic components, with a predominant frequency that increases proportionally to flow velocity. For a given void fraction, the force spectra for various flow velocities and elbow geometries coincide generally well on a plot of the normalized power spectral density as a function of a dimensionless frequency. The predominant frequencies of excitation agree with recent results on the characteristics of periodic structures in two-phase flow.


2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


Sign in / Sign up

Export Citation Format

Share Document