Cutting Process Analysis for Uniform and Variable Edge Tools

2010 ◽  
Vol 37-38 ◽  
pp. 280-283
Author(s):  
Zhao Li ◽  
Ai Bing Yu ◽  
Hao Wang ◽  
Liang Dong

Tool edge geometry has obvious influences on cutting tool behaviors. FEM modeling and simulation of orthogonal cutting process using uniform and variable edge cutting tools were studied with dynamics explicit ALE method. AISI 1045 steel was chosen for workpiece, and cemented carbide was chosen for cutting tool. Three sections of uniform and variable edges were chosen for analysis. Cutting forces and temperature distributions were calculated for uniform and variable edge carbide cutting tool. Simulation results show that variable edge cutting tool obtains small cutting forces. Ploughing force tends to reduce when variable edge cutting tool was used. Variable edge cutting tool reduces the heat generation and presents reasonable temperature distributions, which is beneficial to cutting life. The force and temperature distributions demonstrate the advantages of variable edge cutting tool.

2010 ◽  
Vol 37-38 ◽  
pp. 550-553
Author(s):  
Xin Li Tian ◽  
Zhao Li ◽  
Xiu Jian Tang ◽  
Fang Guo ◽  
Ai Bing Yu

Tool edge radius has obvious influences on micro-cutting process. It considers the ratio of the cutting edge radius and the uncut chip thickness as the relative tool sharpness (RST). FEM simulations of orthogonal cutting processes were studied with dynamics explicit ALE method. AISI 1045 steel was chosen for workpiece, and cemented carbide was chosen for cutting tool. Sixteen cutting edges with different RTS values were chosen for analysis. Cutting forces and temperature distributions were calculated for carbide cutting tools with these RTS values. Cutting edge with a small RTS obtains large cutting forces. Ploughing force tend to sharply increase when the RTS of the cutting edge is small. Cutting edge with a reasonable RTS reduces the heat generation and presents reasonable temperature distributions, which is beneficial to cutting life. The force and temperature distributions demonstrate that there is a reasonable RTS range for the cutting edge.


SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 171
Author(s):  
Sobron Yamin Lubis ◽  
Sofyan Djamil ◽  
Yehezkiel Kurniawan Zebua

In the machining of metal cutting, cutting tools are the main things that must be considered. Using improper cutting parameters can cause damage to the cutting tool. The damage is Built-Up Edge (BUE). The situation is undesirable in the metal cutting process because it can interfere with machining, and the surface roughness value of the workpiece becomes higher. This study aimed to determine the effect of cutting speed on BUE that occurred and the cutting strength caused. Five cutting speed variants are used. Observation of the BUE process is done visually, whereas to determine the size of BUE using a digital microscope. If a cutting tool occurs BUE, then the cutting process is stopped, and measurements are made. This study uses variations in cutting speed consisting of cutting speed 141, 142, 148, 157, 163, and 169 m/min, and depth of cut 0.4 mm. From the results of the study were obtained that the biggest feeding force is at cutting speed 141 m/min at 347 N, and the largest cutting force value is 239 N with the dimension of BUE length: 1.56 mm, width: 1.35 mm, high: 0.56mm.


Author(s):  
J. Ma ◽  
Nick H. Duong ◽  
Shuting Lei

This paper investigates the performance of microbump textured cutting tool in dry orthogonal machining of mild steel (AISI 1045 steel) using AdvantEdge finite element simulation. Microbumps are designed on the rake face of cemented carbide (WC/Co) cutting inserts. The purpose is to examine the effect of microbump textured tools on machining performance and to compare it with non-textured regular cutting tools. Specifically, the following microbump parameters are examined: microbump width, microbump height, and edge distance (the distance from cutting edge to the first microbump). Their effects are assessed in terms of the main force, thrust force, and chip-tool contact length. It is found that microbump textured cutting tools generate lower cutting force and thrust force and consequently lower the energy consumption for machining. The micobump width, microbump height, and edge distance all have influence on cutting force in their own ways.


2011 ◽  
Vol 383-390 ◽  
pp. 6741-6746
Author(s):  
Wan Masrurah Bt Hairudin ◽  
Mokhtar B. Awang

In this paper, thermo mechanical modelling of cutting process has been developed using a commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modelled using Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assumed to describe the material behaviour during the process. This study is aimed at temperature and stresses distributions during machining of AISI 1045 steel with different rake angles; α=0° and α= -10°. The results showed that the maximum stress for 0° and -10° are 963MPa and 967MPa while the maximum temperature results shown that 771°C and 347°C.


2005 ◽  
Vol 128 (2) ◽  
pp. 435-444 ◽  
Author(s):  
Yiğit Karpat ◽  
Tuğrul Özel

In this paper, a predictive thermal and analytical modeling approach for orthogonal cutting process is introduced to conveniently calculate forces, stress, and temperature distributions. The modeling approach is based on the work material constitutive model, which depends on strain, strain rate, and temperature. In thermal modeling, oblique moving band heat source theory is utilized and analytically combined with modified Oxley’s parallel shear zone theory. Normal stress distribution on the tool rake face is modeled as nonuniform with a power-law relationship. Hence, nonuniform heat intensity at the tool-chip interface is obtained from the predicted stress distributions utilizing slip line field analysis of the modified secondary shear zone. Heat sources from shearing in the primary zone and friction at the tool-chip interface are combined, heat partition ratios are determined for temperature equilibrium to obtain temperature distributions depending on cutting conditions. Model validation is performed by comparing some experimental results with the predictions for machining of AISI 1045 steel, AL 6082-T6, and AL 6061-T6 aluminum. Close agreements with the experiments are observed. A set of detailed, analytically computed stress and temperature distributions is presented.


Author(s):  
J. Ma ◽  
Xianchen Ge ◽  
Nick H. Duong ◽  
Shuting Lei

This paper studies the performance of restricted cutting tool in dry orthogonal machining of mild steel (AISI 1045 steel) using finite element simulations. The rake face of cemented carbide (WC/Co) cutting inserts is designed and the rake face length is shortened. The purpose is to examine the effect of shortened tools on machining performance and to compare it with regular cutting tools. The following restricted tool parameters are examined: length of rake face, alpha angle (the angle between the rake face and the supporting face), and edge radius. Their effects are assessed in terms of the main force, thrust force, and chip-tool contact length. It is found that restricted cutting tools generate lower cutting force and thrust force and consequently lower the energy necessary for machining. The length of rake face, the angle between the rake face and the supporting face, and edge radius all have influence on cutting force in their own ways. The effects of these three parameters on the tool temperature distribution are also investigated.


2005 ◽  
Vol 128 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Yiğit Karpat ◽  
Tuğrul Özel

In this paper, predictive modeling of cutting and ploughing forces, stress distributions on tool faces, and temperature distributions in the presence of tool flank wear are presented. The analytical and thermal modeling of orthogonal cutting that is introduced in Part I of the paper is extended for worn tool case in order to study the effect of flank wear on the predictions. Work material constitutive model based formulations of tool forces and stress distributions at tool rake and worn flank faces are utilized in calculating nonuniform heat intensities and heat partition ratios induced by shearing, tool-chip interface friction, and tool flank face-workpiece interface contacts. In order to model forces and stress distributions under the flank wear zone, a force model from Waldorf (1996) (“Shearing Ploughing, and Wear in Orthogonal Machining,” Ph.D. thesis, University of Illinois at Urbana-Champaign, IL) is adapted. Model is tested and validated for temperature and force predictions in machining of AISI 1045 steel and AL 6061-T6 aluminum.


2007 ◽  
Vol 329 ◽  
pp. 705-710 ◽  
Author(s):  
X.L. Zhao ◽  
Yong Tang ◽  
Wen Jun Deng ◽  
F.Y. Zhang

A coupled thermoelastic-plastic plane-strain finite element model is developed to study orthogonal cutting process with and without flank wear. The cutting process is simulated from the initial to the steady-state of cutting force and cutting temperature, by incrementally advancing the cutting tool forward. Automatic continuous remeshing is employed to achieve chip separation at the tool tip regime. The effect of the degree of the flank wear on the cutting forces and temperature fields is analyzed. With the flank wear increasing, the maximum cutting temperature values on the workpiece and cutting tool increase rapidly and the distribution of temperature changes greatly. The increase of tool flank wear produced slight increase in cutting forces but significant increase in thrust forces.


2011 ◽  
Vol 223 ◽  
pp. 304-313
Author(s):  
E. Kwiatkowska ◽  
Piotr Niesłony ◽  
W. Grzesik

The development of an accurate model for the shear and normal stresses on the rake face is very important for modeling of the metal cutting mechanics. It is known that the stresses vary over the contact surfaces of the tool and change substantially with their configurations. On the other hand, the recent attempts were generally addressed to orthogonal cutting process and tools with flat rake faces. At present, grooved tools with complex rake faces are commonly applied in the industry. In this study a plane strain finite element (FEM) program AdvantEdge was used to simulate the cutting process with some disposable grooved cutting tools. Both the reduced von Mises stresses and their components in x and y directions were considered and visualized for appropriate chip formation stages. In particular, the distribution of the contact stresses was revealed when chip breakage occurs. The simulated results were correlated with the geometry of the chip breaker and process parameters.


Sign in / Sign up

Export Citation Format

Share Document