Estimating the Life-Cycle of the Medical Implants Made by SLM Titanium-Alloyed Materials Using the Finite Element Method

2013 ◽  
Vol 371 ◽  
pp. 478-482 ◽  
Author(s):  
Razvan Păcurar ◽  
Ancuţa Păcurar ◽  
Nicolae Bâlc ◽  
Anna Petrilak ◽  
Ladislav Morovič

Within this article, there are presented a series of researches that were developed for the first time in Romania, in the field of customized medical implants made by using the Selective Laser Melting (SLM) technology. Finite Element Method (FEM) has been successfully used in order to analyze the fatigue and to determine the durability of a customized medical implant that has been selected for the made analysis. The material characteristics taken into consideration within the Finite Element Analysis (FEA) that has been performed were the ones of two types of dedicated metallic powders which are commercially available (TiAl6Nb7 and TiAl6V4 material) and suitable for the SLM 250 HL equipment from the SLM Solutions GmbH Company from Lubeck, Germany. The Finite Element Analysis made in the case of these two types of SLM titanium alloyed materials, proved that the modified characteristics, such as the yield strength and hardness of the material are significantly influencing the durability of the medical implants made by SLM technology.

1994 ◽  
Vol 31 (2) ◽  
pp. 155-166
Author(s):  
R. Chedid

A practical introduction to finite element analysis of electromagnetic problems An attempt is made in this paper to bring the finite element method to a wider audience of undergraduate and graduate students through an approach that focuses on the design of the preprocessor, the solver and the postprocessor. Typical Fortran code is cited to illustrate the elegance of the method.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


1980 ◽  
Vol 47 (2) ◽  
pp. 377-382 ◽  
Author(s):  
K. Miya ◽  
T. Takagi ◽  
Y. Ando

Some corrections have been made hitherto to explain the great discrepancy between experimental and theoretical values of the magnetoelastic buckling field of a ferromagnetic beam plate. To solve this problem, the finite-element method was applied. A magnetic field and buckling equations of the ferromagnetic beam plate finite in size were solved numerically assuming that the magnetic torque is proportional to the rotation of the plate and by using a disturbed magnetic torque deduced by Moon. Numerical and experimental results agree well with each other within 25 percent.


2014 ◽  
Vol 525 ◽  
pp. 731-735 ◽  
Author(s):  
Qian Peng Han ◽  
Bo Peng

Finite element method(FEM) have been widely used in modern mechanical design,mesh generation is an important part of the finite element analysis,this article discussed the process of mesh generation through two practical cases and put forward some issues we should pay more attention to.


2021 ◽  
Author(s):  
Muhammad Ardalani-Farsa

The finite element method has been applied in the area of the cervical spine since the 1970's. In the present research work, the finite element method was employed to model, validate and analyze a complete model of the human cervical spine from C1 to T1, including interconnecting intervertebral discs, ligaments and joints. The developed model of the cervical spine was validated by the experimental results presented in the literature. As the values obtained from the finite element analysis were mainly in the range of motion observed in the experiment; it was concluded that the finite element results were consistent with the reported data in the literature. Next, the validated model of the cervical spine was examined under physiological loading modes to locate the areas bearing maximum stress in the cervical spine. Finally, to study the effect of variations in the material properties on the output of the finite element analysis, a material property sensitivity study was conducted to the C3-T1 model of cervical spine. Changes in the material properties of the soft tissues affected the external and internal responses of both the hard and soft tissue components, while changes in those of the hard tissues only affected the internal response of hard tissues.


Author(s):  
A. Carnero ◽  
J. Kubiak ◽  
A. López

Abstract Frequent failures of long turbine blades forced an electrical utility to sponsor research work to find out the causes of the failures. One of the techniques applied in this work was finite element analysis. The paper presents an application of the finite element method for computation of the natural frequencies, steady-state and alternating stresses, deformations due to forces acting on the blades and modal shapes of the turbine long blade groups. Two stages, L-1 and L-0 of the low pressure part of a steam turbine, were analyzed. It has been postulated that the results of the FEM analysis of the blades groups would be complementary to those obtained from the radio telemetry test (which was carried out during operation of the turbine) for the purpose of blade group failure diagnosis. However, the results of the analysis show that the FEM results were decisive in blade failure identification (L-1 stage moving blades). The graphical post processor of the FEM code revealed that the first blade in the group was the one most protruding from the stage rotating plane, thus indicating that this blade was the most prone to erosion. This was confirmed in the inspection of the turbine. This finding showed why only the first blade in the group was cracked (erosion induced cracks). The mode shapes were also very helpful in identifying other types of cracks which affected other parts of the blades. It can be concluded that the finite element method is very useful for identification of very difficult cases of blade faults and indispensable for carrying out modifications to prevent future failures.


2013 ◽  
Vol 275-277 ◽  
pp. 2156-2160
Author(s):  
Yu Yang ◽  
Cun Ping Liu ◽  
Yong Fu Yuan ◽  
Sheng Guo

Present work describes a piercing process using the finite element method in order to investigate the wear of mold punch. In present investigation, the piercing clearance and punch fillet radius was studied by simulating the piercing operation of an AISI 1035 sheet. Simulation used the FEM program ANSYS/LS-DYNA. The results show that the best resistance of the mold punch is reached when the punch round radius reached 0.03mm and piercing clearance reached 0.15mm.


2013 ◽  
Vol 367 ◽  
pp. 165-168 ◽  
Author(s):  
Oldrich Sucharda ◽  
Jiri Brozovsky

The paper describes and compares selected failure and plasticity conditions of concrete. The CEB-FIB condition, the von Mises plasticity condition with modification for concrete and the Chen-Chen condition are studied. The conditions are compared in 2D and two of these conditions are also used for numerical analysis of a deep beam. The software BSA is chosen for the analysis in the paper. The software BSA is based on the finite element method.


Sign in / Sign up

Export Citation Format

Share Document