Highly Efficient Degradation of Methylene Blue on Microwave Synthesized FeVO4 Nanoparticles Photocatalysts under Visible-Light Irradiation

2013 ◽  
Vol 372 ◽  
pp. 153-157 ◽  
Author(s):  
Si Jiang Hu ◽  
Juan Yang ◽  
Xue Hong Liao

Ferric vanadate (FeVO4) nanoparticles as visible-light photocatalysts were successfully prepared by microwave irradiation method. The structure and morphology of FeVO4 nanoparticles were charactered by X-ray diffraction (XRD) and scanning electron microscope (SEM). Absorption ranges, which are responsible for the observed photocatalyst behavior, were investigated. Photocatalytic activities of the synthesized samples were examined by studying the degradation of the model dyes Methylene Blue (MB) under visible-light irradiation (400 nm). Various influence factors such as heat treatment temperature of FeVO4, and solution pH values as well as the amount of hydrogen peroxide and FeVO4 catalyst on the photocatalytic degradation of MB were discussed. Results clearly show the degradation ratio can reach 99% under the optimal reaction conditions in dye wastewater treatment in a short photocatalytic reaction time.

RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


2014 ◽  
Vol 29 (20) ◽  
pp. 2473-2482 ◽  
Author(s):  
Yingchang Ke ◽  
Hongxu Guo ◽  
Dongfang Wang ◽  
Jianhua Chen ◽  
Wen Weng

Abstract


2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


2021 ◽  
Vol 7 (2) ◽  
pp. 129-141
Author(s):  
Adawiah Adawiah ◽  
Muhammad Derry Luthfi Yudhi ◽  
Agustino Zulys

The yttrium based metal-organic framework (MOF) Y-PTC was synthesized by the solvothermal method using perylene as the linker and yttrium as metal ion. This study aims to assess the photocatalytic activity of yttrium-perylenetetracarboxylate (Y-PTC) metal-organic framework (MOF) toward methylene blue and methyl orange under visible light irradiation. The results of the FTIR analysis showed that Y-PTC MOF had a different structure and composition from its precursor (Na4PTC). The Y-PTC MOF has a bandgap energy value of 2.20 eV with a surface area of 47.7487 m2/g. The SEM-EDS analysis showed an elemental composition of yttrium, carbon, and oxygen, were 6.9%, 72.1% and 20.7%, respectively. Furthermore, Y-PTC MOF was able to adsorb dyes at the optimum by 78.10% and 35.57% toward methylene blue (MB) and methyl orange (MO) at the dispersion period of 60 mins. Y-PTC MOF exhibited photocatalytic activity towards the degradation of methylene blue and methyl orange under visible light irradiation. The addition of H2O2 inhibited Y-PTC photocatalytic activity towards MO degradation from 50.89% to 26.38%. In contrast to MO, the addition of H2O2 had a positive effect on MB, which increased the degradation from 87.56% to 91.65%. Therefore, Y-PTC MOF possessed the potential of a photocatalyst material in dyes degradation under visible light irradiation.


2014 ◽  
Vol 787 ◽  
pp. 35-40 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Peng Wei Zhou ◽  
Hao Guo ◽  
Bo Yang ◽  
Ru Fei Ren

The p-n junction photocatalysts, p-CuO (at. 0-25%)/n-ZnO nanocomposite were prepared through hydrothermal method without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, and UV-vis spectroscopy. The results demonstrated that the CuO/ZnO nanocomposite presented a two-dimensional morphology composed of sheet-like ZnO nanostructures adorned with CuO nanoparticles. The photocatalytic activity of CuO/ZnO with different Cu/Zn molar rations and pure ZnO synthesized by the identical synthetic route were evaluated by degrading methylene blue (MB) dye under UV-visible light irradiation. The CuO/ZnO with Cu/Zn molar ratio of 4% exhibits the highest photocatalytic activity compared that of the other photocatalysts under the identical conditions. It is mainly attributed to the increased charge separation rate in the nanocomposite and the extended photo-responding range.


2010 ◽  
Vol 75 (11) ◽  
pp. 1139-1148 ◽  
Author(s):  
Dmitry S. Perekalin ◽  
Evgeniya A. Trifonova ◽  
Ivan V. Glukhov ◽  
Josef Holub ◽  
Alexander R. Kudinov

Reaction of the tricarbollide anion [7,8,9-C3B8H11]– (1a) with the naphthalene complex [CpRu(C10H8)]+ under visible light irradiation in CH2Cl2 gives the 12-vertex closo-ruthenacarborane 1-Cp-1,2,3,5-RuC3B8H11 (2; 87% yield). This complex was also obtained by reaction of 1a with CpRu(cod)Cl (97%). Upon heating at 80 °C in toluene 2 rearranges into isomer 1-Cp-1,2,4,10-RuC3B8H11 (3; 63%). Irradiation of 1a with [CpRu(C10H8)]+ in acetone gives the 11-vertex closo-1-Cp-1,2,3,4-RuC3B7H10 (4; 32%). The latter was also prepared by reaction of 1a with [CpRu(MeCN)3]+ (59%). Compound 2 slowly undergoes cage contraction in acetone giving 4. Irradiation of 1a with [Cp*Ru(C10H8)]+ affords the isomeric 12-vertex closo-ruthenacarboranes 1-Cp*-1,2,3,5-RuC3B8H11 and 1-Cp*-1,2,4,10-RuC3B8H11 (2.2:1 ratio; 56%). Reaction of the amino-substituted tricarbollide anion [7-tBuNH-7,8,9-C3B8H10]– with [(C5R5)Ru(C10H8)]+ (R = H, Me) selectively gives 12-vertex closo-ruthenacarboranes 1-(C5R5)-12-tBuNH-1,2,4,12-RuC3B8H10 (ca. 50%). The structures of 2 and 4 were confirmed by X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document