Research on Numerical Problem in the Simulation Statics Analysis Program of High Speed Ball Bearing

2013 ◽  
Vol 376 ◽  
pp. 248-252
Author(s):  
Ming Yan ◽  
Ming Ming Wang ◽  
Xiang Jun Zhu

Load distribution, contact angle, rotate speed of rolling element, support stiffness of bearing, fatigue life and other aggregative indicators are got through the simulation statics analysis program of high speed ball bearing. Consequently, it is widely used in the engineering field. The domestic thesis about the simulation statics analysis program of the high speed ball bearing is barely reported, and most of the theoretical research thesis are not specific and have some mistakes. Consequently, aim for programming about a practical suit of the simulation statics analysis program of ball bearing, and the certain numerical problems are studied in the procedure of program.

1972 ◽  
Vol 94 (2) ◽  
pp. 117-122 ◽  
Author(s):  
W. J. Anderson ◽  
D. P. Fleming ◽  
R. J. Parker

The series-hybrid bearing couples a fluid-film bearing with a rolling-element bearing such that the rolling-element bearing inner race runs at a fraction of shaft speed. A series-hybrid bearing was analyzed and experiments were run at thrust loads from 100 to 300 lb and speeds from 4000 to 30,000 rpm. Agreement between theoretical and experimental speed sharing was good. The lowest speed ratio (ratio of ball bearing inner-race speed to shaft speed) obtained was 0.67. This corresponds to an approximate reduction in DN value of 1/3. For a ball bearing in a 3 million DN application, fatigue life would theoretically be improved by a factor as great as 8.


1971 ◽  
Vol 93 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Harold H. Coe ◽  
Richard J. Parker ◽  
Herbert W. Scibbe

An experimental investigation was performed with two series (115 and 215) of 75 mm bore ball bearings using hollow balls as the rolling elements. The bearings were tested at 500 and 1000 pounds thrust loads at shaft speeds up to 24000 rpm. The 115 series bearings with 1/2-in. SAE 52100 steel balls showed very little difference in torque, outer-race temperature, or rolling-element fatigue life when compared to similar data for a solid ball bearing. The 215 series bearings with 11/16-in. AISI M-50 steel balls showed only slight differences in torque and outer-race temperature but a very significant decrease in rolling-element fatigue life compared to a solid ball bearing. The balls failed in flexure fatigue, due to a stress concentration in the weld area.


2021 ◽  
pp. 1-28
Author(s):  
Bin Fang ◽  
Jinhua Zhang

Abstract In this paper, a comprehensive analytical model for the fatigue life prediction of ball bearing in various operating conditions is presented. Not only the internal clearance variations induced by the centrifugal expansion and assembly interference, but also ball inertia forces and ball-raceway separations are fully considered in theoretical modeling to achieve accurate life prediction of ball bearing. The model has been validated by comparison with the static results in previous literature. Based on this, the results of the load distribution and fatigue life versus the internal clearance of ball bearing under various operating conditions are studied. The results show that there is always an optimal clearance to maximize bearing fatigue life for the radial load or the combined load conditions, and the size of the optimal clearance for bearing life is determined by both the load conditions and rotating speeds to ensure the uniformity of the internal load distribution of the ball bearing. Therefore, the above theoretical and conclusions can be used in structural design optimization and assembly parameters selection of ball bearing to maximize the life characteristic.


2020 ◽  
Vol 72 (7) ◽  
pp. 845-850
Author(s):  
Yue Liu

Purpose The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll ratio based on raceway friction, which is more accurate than the traditional raceway control theory. Design/methodology/approach The uniform model of spin to roll ratio based on raceway friction in a wide speed range is proposed using quasi-statics method, which considers centrifugal force, gyroscopic moment, friction force of raceway and other influencing factors. The accuracy is considerably improved compared with the static model without increasing too much computation. Findings A uniform model for spin to roll ratio of angular contact ball bearing based on raceway friction is established, and quite different relationships between fatigue life and speed under two operating conditions are found. Research limitations/implications The conclusion of this paper is based on the bearing basic fatigue life calculation theory provided by ISO/TS 16281; however, the accuracy of theory needs to be further verified. Practical implications This paper provides guidance for applying angular contact ball bearing, especially at a high speed. Originality/value This paper reveals the changing trend of fatigue life of angular contact ball bearing with the speed under different loads. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0030


1963 ◽  
Vol 85 (2) ◽  
pp. 273-278 ◽  
Author(s):  
A. B. Jones ◽  
T. A. Harris

Conventional calculations of ball and roller bearing carrying capacity and fatigue life assume that the raceway bodies are rigid structures and that all elastic deformation occurs at the rolling elements’ contact with the raceways. In many instances, and particularly with aircraft applications, the bearing rings and their supports cannot be considered rigid. One such application is the planet gear in a transmission. This report develops a theory whereby the effects of the elastic distortions of the outer race of a rolling-element bearing on the internal load distribution and fatigue life of the bearing can be considered. The theory has been programmed for a high-speed, digital computer. An example of calculation for a planet gear roller bearing whose outer race is integral with the gear and of relatively thin section is given. The distortions of the flexible outer ring cause a significantly lower bearing fatigue life (L10) than would occur if the outer ring were rigid and considering a practical range of bearing diametral clearances. Mr. Jones developed the theoretical analysis for this paper and Mr. Harris provided the programming and the experimental data.


1975 ◽  
Vol 97 (3) ◽  
pp. 350-355 ◽  
Author(s):  
R. J. Parker ◽  
E. V. Zaretsky

Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. This material has a low specific gravity (41 percent that of bearing steel) and has a potential application as low mass balls for very high-speed ball bearings. The five-ball fatigue tester was used to test 12.7-mm- (0.500-in-) dia silicon nitride balls at maximum Hertz stresses ranging from 4.27 × 109 N/m2 (620,000 psi) to 6.21 × 109 N/m2 (900,000 psi) at a race temperature of 328K (130 deg F). The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.


Author(s):  
Wen-Zhong Wang ◽  
Lang Hu ◽  
Sheng-Guang Zhang ◽  
Ling-Jia Kong

In this paper, a method based on coordinate equivalence was presented to investigate the characteristic parameters of angular contact ball bearing such as contact angle and contact force between ball and raceways subjected to the combined radial, axial and moment loads, with considering the effects of centrifugal force and gyroscopic moment in high-speed conditions. The radial, axial and angular displacements are solved based on Newton–Raphson method rather than as the known variables. The method simplifies the procedure involved in determining derivatives for Newton–Raphson method. The results show good agreement with existent model and can be used to analyze the bearing performance, especially for high-speed condition. It was also shown that the inertial loads resulting from the high-speed condition have significant effect on the contact angle and contact force between ball and raceways and have to be considered in the bearing design and performance analysis.


Sign in / Sign up

Export Citation Format

Share Document