The Research on Pain Mechanism Based on the Spectrum Analysis of EEG

2013 ◽  
Vol 380-384 ◽  
pp. 4202-4206 ◽  
Author(s):  
Ji Jun Tong ◽  
Yan Qin Kang ◽  
Guang Lei Zhang ◽  
Jin Liu ◽  
Qiang Cai

Pain is one of the most important sensations in daily life, it is necessary to get the essence and mechanism of pain in pain treatment and control. In this article, the pain was induced through injection of angelica on the left shoulder of 12 volunteers, as placebo-control stimulation, the isotonic saline was injected. And through the spectrum analysis of EEG, the EEG feature, the power percentile of δ ,θ, α, β were extracted during the experiment to study the modulation effect of pain on brain information and central mechanism. The research demonstrated that the δ band energy ratio increased and the θ, α, β band energy ratio decreased after pain stimulation, though the activated areas were not strictly same, they mainly located on the left frontal cortex, left temporal cortex, left parietal cortex, occipital cortex. It indicated that these areas were modulated significantly by pain stimulation.

2018 ◽  
Author(s):  
Theo Marins ◽  
Maite Russo ◽  
Erika Rodrigues ◽  
jorge Moll ◽  
Daniel Felix ◽  
...  

ABSTRACTEvidence of cross-modal plasticity in blind individuals has been reported over the past decades showing that non-visual information is carried and processed by classical “visual” brain structures. This feature of the blind brain makes it a pivotal model to explore the limits and mechanisms of brain plasticity. However, despite recent efforts, the structural underpinnings that could explain cross-modal plasticity in congenitally blind individuals remain unclear. Using advanced neuroimaging techniques, we mapped the thalamocortical connectivity and assessed cortical thickness and integrity of white matter of congenitally blind individuals and sighted controls to test the hypothesis that aberrant thalamocortical pattern of connectivity can pave the way for cross-modal plasticity. We described a direct occipital takeover by the temporal projections from the thalamus, which would carry non-visual information (e.g. auditory) to the visual cortex in congenitally blinds. In addition, the amount of thalamo-occipital connectivity correlated with the cortical thickness of primary visual cortex (V1), supporting a probably common (or related) reorganization phenomena. Our results suggest that aberrant thalamocortical connectivity as one possible mechanism of cross-modal plasticity in blinds, with potential impact on cortical thickness of V1.SIGNIFICANT STATEMENTCongenitally blind individuals often develop greater abilities on spared sensory modalities, such as increased acuity in auditory discrimination and voice recognition, when compared to sighted controls. These functional gains have been shown to rely on ‘visual’ cortical areas of the blind brain, characterizing the phenomenon of cross-modal plasticity. However, its anatomical underpinnings in humans have been unsuccessfully pursued for decades. Recent advances of non-invasive neuroimaging techniques allowed us to test the hypothesis of abnormal thalamocortical connectivity in congenitally blinds. Our results showed an expansion of the thalamic connections to the temporal cortex over those that project to the occipital cortex, which may explain, the cross-talk between the visual and auditory systems in congenitally blind individuals.


Author(s):  
Gary A. Walco ◽  
Maureen C. Kelley

In this chapter we will offer a way of framing the ethical balance of competing considerations in pain treatment in infants and children, distinguishing between analyses of harms and benefits, from other more pragmatic, contextual, and cultural considerations. We begin with the ethical foundations behind good pain management for any patient, and especially children: the ethical duty to prevent harm by alleviating pain or suffering, and the importance of assuring equal access to pain treatment. Historically, the driving ethical concern in paediatric pain has been the pervasive undertreatment of pain in children. In the second and main section of the chapter, we offer a detailed analysis of the practical ethical challenges involved in weighing the harms and benefits of pain relief against untreated or undertreated pain. In the third section, we will discuss the more specific concerns of socioeconomic and cultural determinants to paediatric pain treatment. Finally, in the last section, we will address concerns in conducting research on pain interventions in infants and children, as clearly many of the modal methodologies traditionally used for clinical trials in adults (e.g. placebo control designs) pose unjustifiable risk to younger individuals. We will also discuss the importance of considering local context as it impacts standards of care to guide ethical paediatric pain research.


1998 ◽  
Vol 80 (5) ◽  
pp. 2790-2796 ◽  
Author(s):  
A. R. McIntosh ◽  
R. E. Cabeza ◽  
N. J. Lobaugh

McIntosh, A. R., R. E. Cabeza, and N. J. Lobaugh. Analysis of neural interactions explains the activation of occipital cortex by an auditory stimulus . J. Neurophysiol. 80: 2790–2796, 1998. Large-scale neural interactions were characterized in human subjects as they learned that an auditory stimulus signaled a visual event. Once learned, activation of left dorsal occipital cortex (increased regional cerebral blood flow) was observed when the auditory stimulus was presented alone. Partial least-squares analysis of the interregional correlations (functional connectivity) between the occipital area and the rest of the brain identified a pattern of covariation with four dominant brain areas that could have mediated this activation: prefrontal cortex (near Brodmann area 10, A10), premotor cortex (A6), superior temporal cortex (A41/42), and contralateral occipital cortex (A18). Interactions among these regions and the occipital area were quantified with structural equation modeling to identify the strongest sources of the effect on left occipital activity (effective connectivity). Learning-related changes in feedback effects from A10 and A41/42 appeared to account for this change in occipital activity. Influences from these areas on the occipital area were initially suppressive, or negative, becoming facilitory, or positive, as the association between the auditory and visual stimuli was acquired. Evaluating the total effects within the functional models showed positive influences throughout the network, suggesting enhanced interactions may have primed the system for the now-expected visual discrimination. By characterizing both changes in activity and the interactions underlying sensory associative learning, we demonstrated how parts of the nervous system operate as a cohesive network in learning about and responding to the environment.


2003 ◽  
Vol 15 (7) ◽  
pp. 1052-1062 ◽  
Author(s):  
T. N. Wydell ◽  
T. Vuorinen ◽  
P. Helenius ◽  
R. Salmelin

Behavioral studies have shown that short letter strings are read faster than long letter-strings and words are read faster than nonwords. Here, we describe the dynamics of letter-string length and lexicality effects at the cortical level, using magnetoencephalography, during a reading task in Finnish with long (eight-letter) and short (four-letter) word/nonword stimuli. Length effects were observed in two spatially and temporally distinct cortical activations: (1) in the occipital cortex at about 100 msec by the strength of activation, regardless of the lexical status of the stimuli, and (2) in the left superior temporal cortex between 200 and 600 msec by the duration of activation, with words showing a smaller effect than nonwords. A significant lexicality effect was also evident in this later activation, with stronger activation and longer duration for nonwords than words. There seem to be no distinct cortical areas for reading words and nonwords. The early length effect is likely to be due to the low-level visual analysis common to all stimulus letter-strings. The later lexicality and length effects apparently reflect converging lexico-semantic and phonological influences, and are discussed in terms of dual-route and single-route connectionist models of reading.


2003 ◽  
Vol 15 (2) ◽  
pp. 157-172 ◽  
Author(s):  
M. A. Schoenfeld ◽  
M. Woldorff ◽  
E. Düzel ◽  
H. Scheich ◽  
H.-J. Heinze ◽  
...  

The neural mechanisms and role of attention in the processing of visual form defined by luminance or motion cues were studied using magnetoencephalography. Subjects viewed bilateral stimuli composed of moving random dots and were instructed to covertly attend to either left or right hemifield stimuli in order to detect designated target stimuli that required a response. To generate form-from-motion (FFMo) stimuli, a subset of the dots could begin to move coherently to create the appearance of a simple form (e.g., square). In other blocks, to generate form-from-luminance (FFLu) stimuli that served as a control, a gray stimulus was presented superimposed on the randomly moving dots. Neuromagnetic responses were observed to both the FFLu and FFMo stimuli and localized to multiple visual cortical stages of analysis. Early activity in low-level visual cortical areas (striate/early extrastriate) did not differ for FFLu versus FFMo stimuli, nor as a function of spatial attention. Longer latency responses elicited by the FFLu stimuli were localized to the ventral-lateral occipital cortex (LO) and the inferior temporal cortex (IT). The FFMo stimuli also generated activity in the LO and IT, but only after first eliciting activity in the lateral occipital cortical region corresponding to MT/V5, resulting in a 50–60 msec delay in activity. All of these late responses (MT/V5, LO, and IT) were significantly modulated by spatial attention, being greatly attenuated for ignored FFLu and FFMo stimuli. These findings argue that processing of form in IT that is defined by motion requires a serial processing of information, first in the motion analysis pathway from V1 to MT/V5 and thereafter via the form analysis stream in the ventral visual pathway to IT.


2014 ◽  
Vol 971-973 ◽  
pp. 1288-1291 ◽  
Author(s):  
Zi Liang Yao ◽  
Min Wang ◽  
Tao Zan ◽  
Guo Fu Liu

The process of grinding chatter is divided into three states: stable grinding state, chatter gestation state and chatter state. The vibration signals of grinding process contain chatter features can correspond well to the changes of grinding process. By analyzing the natural frequency band energy ratio of grinding process, a method of grinding chatter prediction is proposed. Experimental results show that the natural frequency band energy ratio is beyond a certain threshold, chatter occurred, otherwise no chatter happened. The method of grinding prediction can provide reference for vibration monitoring in practice.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjie Xu ◽  
Chuanjun Zhuo ◽  
Wen Qin ◽  
Jiajia Zhu ◽  
Chunshui Yu

Altered spontaneous brain activity as measured by ALFF, fALFF, and ReHo has been reported in schizophrenia, but no consensus has been reached on alternations of these indexes in the disorder. We aimed to clarify the regional alterations in ALFF, fALFF, and ReHo in schizophrenia using a meta-analysis and a large-sample validation. A meta-analysis of activation likelihood estimation was conducted based on the abnormal foci of ten studies. A large sample of 86 schizophrenia patients and 89 healthy controls was compared to verify the results of the meta-analysis. Meta-analysis demonstrated that the alternations in ALFF and ReHo had similar distribution in schizophrenia patients. The foci with decreased ALFF/fALFF and ReHo in schizophrenia were mainly located in the somatosensory cortex, posterior parietal cortex, and occipital cortex; however, foci with increased ALFF/fALFF and ReHo were mainly located in the bilateral striatum, medial temporal cortex, and medial prefrontal cortex. The large-sample study showed consistent findings with the meta-analysis. These findings may expound the pathophysiological hypothesis and guide future research.


Sign in / Sign up

Export Citation Format

Share Document