Influence of Fuel Supply Advance Angle on Fuel Economy of Diesel Engine with Ethanol–Diesel Blend Fuel

2013 ◽  
Vol 385-386 ◽  
pp. 1045-1048
Author(s):  
An Kang Wu ◽  
Hua Zhu ◽  
Ke Jiu Lu

The test on the influence of changing fuel supply advance angle on fuel economy was carried out on single cylinder diesel engineseparately using diesel fuel and ethanoldiesel blend fue1. The test result shows that the influence is more sensible when the ethanoldiese1 blend rue1 is used, and it is beneficial for increasing the fuel economy to reduce suitably fuel supply advance angle.

2021 ◽  
Author(s):  
Thanigaivelan V ◽  
Lavanya R

Abstract Emission from the DI diesel engine is series setback for environment viewpoint. Intended for that investigates for alternative biofuel is persuaded. The important hitches with the utilization of biofuels and their blends in DI diesel engines are higher emanations and inferior brake-thermal efficiency as associated to sole diesel fuel. In this effort, Cashew nut shell liquid (CNSL) biodiesel, hydrogen and ethanol (BHE) mixtures remained verified in a direct-injection diesel engine with single cylinder to examine the performance and discharge features of the engine. The ethanol remained supplemented 5%, 10% and 15% correspondingly through enhanced CNSL as well as hydrogen functioned twin fuel engine. The experiments done in a direct injection diesel engine with single-cylinder at steadystate conditions above the persistent RPM (1500RPM). Throughout the experiment, emissions of pollutants such as fuel consumption rate (SFC), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and pressure of the fuel were also measured. cylinders. The experimental results show that, compared to diesel fuel, the braking heat of the biodiesel mixture is reduced by 26.79-24% and the BSFC diminutions with growing addition of ethanol from the CNSL hydrogen mixture. The BTE upsurges thru a rise in ethanol proportion with CNSL hydrogen mixtures. Finally, the optimum combination of ethanol with CNSL hydrogen blends led to the reduced levels of HC and CO emissions with trivial upsurge in exhaust gas temperature and NOx emissions. This paper reconnoiters the routine of artificial neural networks (ANN) to envisage recital, ignition and discharges effect.


Author(s):  
P. Venkateswara Rao ◽  
S. Ramesh ◽  
S. Anil Kumar

The primary objective of this work is to reduce the particulate matter (PM) or smoke emission and oxides of nitrogen (NOx emissions) the two important harmful emissions and to increase the performance of diesel engine by using oxygenated additives with diesel as blend fuel. Formulation of available diesel fuel with additives is an advantage than considering of engine modification for improvement of higher output. From the available additives, three oxygenates are selected for experimentation by considering many aspects like cost, content of oxygen, flashpoint, solubility, seal etc. The selected oxygenates are Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC), Diethylene Glycol (DEG). These oxygenates are blended with diesel fuel in proportions of 2.5%, 5% and 7.5% by volume and experiments were conducted on a single cylinder naturally aspirated direct injection diesel engine. From the results the conclusion are higher brake power and lower BSFC obtained for DEC blends at 7.5% of additive as compared to EAA, DEG and diesel at full load. In case of DEC blends the smoke emission is lower, whereas NOx emissions are very low in case of EAA additive blend fuels. The DEC can be considered is the best oxygenating additive to be blend with diesel in a proportion of 7.5% by volume.


Author(s):  
P M Bhatt

Increasing industrialization and motorization led to a significant rise in demand of petroleum products. As these are the non-renewable resources, it will be troublesome to predict the availability of these resources in the future, resulting in uncertainty in its supply and price and is impacting growing economies like India importing 80% of the total demand of the petroleum products. Many attempts have been made by different researchers to find out alternate fuels for Internal Combustion engines. Many alternate fuels like Biodiesel, LPG (Liquefied Petroleum Gas), CNG (Compressed Natural Gas) and Alcohol are being used nowadays by different vehicles. In this context pyrolysis of scrap tyres can be used effectively to produce oil, thereby solving the problem of waste tyre disposal. In the present study, Experimental investigations were carried out to evaluate the performance and emission characteristics of a single cylinder diesel engine fueled by TPO10, TPO15, and TPO20 at a crank angle 280 before TDC (Top Dead Centre) and injection pressure of 180 bar keeping the blend quality by controlling the density and viscosity of tyre pyrolysis oil within permissible limit of euro IV diesel requirement. The performance and emission results were analyzed and compared with that of diesel fuel operation. The results of investigations indicate that the brake thermal efficiency of the TPO - DF blend decreases by 4 to 8%. CO emissions are slightly higher but within permissible limit of euro IV emission standards. HC emissions are higher by about 40 to 60% at partial load whereas smoke opacity is lower by about 14% to 22% as compared to diesel fuel.


Author(s):  
Fan Su ◽  
Malcolm Payne ◽  
Manuel Vazquez ◽  
Peter Eggleton ◽  
Alex Vincent

Biodiesel blends were prepared by mixing low sulphur #2 diesel and biodiesel of two origins (canola and frying oil) at two different concentrations (5% and 20%). They were tested in a single-cylinder four-stroke medium-speed diesel engine under three engine modes representing idle, about 50% power and full load conditions. Engine performance and emissions data obtained with the blends were compared to that of engine running with the #2 diesel. Results indicated that the 5% blends could maintain engine power and fuel economy. Frying oil based B5 provided more significant reductions on CO, THC and PM emissions and increments on NOx emissions as compared with that of the canola B5 fuel. The 20% blends reduce engine CO, PM and smoke emissions, but increase NOx emissions by up to approximately 8%. Engine cylinder pressure and injection pressure data was also collected to provide additional information for evaluation of fuel economy and emissions benefits of using the blends.


2021 ◽  
Vol 8 (2) ◽  
pp. 986-1001
Author(s):  
Abu Saleh Ahmed ◽  
Nur Adibah Abdul Rahim ◽  
Md Rezaur Rahman ◽  
Mohammad Shahril Osman

Fossil fuels are widely recognized as non-renewable energy resources. They play an important role in our daily life because they can be used in various applications such as the production of soap and cosmetics, as an energy source and for transportation. However, the use of these fossil fuels causes negative impacts on humans, animals and the environment. These happen due to the emission of harmful gases into the atmosphere. Not only that, the available fossil fuels are decreasing due to continuous usage by humans. As a result, researchers investigated finding alternative ways to overcome this issue by replacing diesel fuel with biodiesel. Biodiesel is more environmentally friendly relative to diesel fuel. A research study was conducted involving biodiesel. The purpose of this study was to produce Jatropha Biodiesel, as well as evaluate the properties of Jatropha biodiesel and diesel Jatropha biodiesel blended with propanol. The production of Jatropha Biodiesel was done by using two-step transesterification which was an acid-catalyzed transesterification and base-catalyzed transesterification. Different methanol to oil ratios had been used to identify the best ratio to reduce the FFA content in the CJO. 9:1 was the best methanol to oil ratio and then tested with different catalyst weights. It was found that an increase in the weight of catalyst might reduce the amount of biodiesel yield. In addition, this study also investigated and predicted the engine performance and characteristics of diesel Jatropha biodiesel blended with propanol at different blending ratios. The properties of these test fuels were studied. Bomb calorimeter, Fourier Transform Infrared Spectroscopy (FT-IR) analysis and Diesel Engine test were done. Thus, the calorific value and functional group of the test fuels were identified and determined. The calorific value of biodiesel was much higher than conventional diesel due to the existence of oxygen. This could be proven as the analysis of FT-IR also showed a (C=O) bond which reflected the presence of oxygen. The oxygen helped in combustion besides reducing the hydrocarbon released into the air. These findings were then reflected and related to the performance of diesel engines.  


Sign in / Sign up

Export Citation Format

Share Document