Performance of Thermoelectrics and Heat Pipes Refrigerator

2013 ◽  
Vol 388 ◽  
pp. 52-57 ◽  
Author(s):  
Ali A. Sungkar ◽  
Firman Ikhsan ◽  
M. Afin Faisol ◽  
Nandy Putra

Most of refrigerators commonly use the conventional refrigeration system known as Vapor Compression Refrigeration System becoming a big issue lately due to ozone depleting substance it uses as the refrigerant. This paper will shows step by step of an experiment with the objective of constructing a refrigeration system based on thermoelectric which is reliable and compete able with the Vapor Compression Refrigeration System. The designing of this refrigeration system shows attention to the environment that is combined with the knowledge so the environmental friendly technology can be applied. The performance of thermoelectric refrigerator was conducted under variation of input power (40W, 72W, and 120W) and operated in ambient temperature and cooling load of water 1000mL to investigate the characteristic of system, the performance, and also the COP. The COP is decrease by increasing of cooling load, QL. The best actual COP is 0.182 reached when the refrigerator operated at input power 40W. The result, it shows that decreasing of ambient temperature affects the decreasing of cabin temperature. Thermoelectric and heat pipe refrigerator cooling system can reach cabin temperature with power 120Watt (8.73A, 14V) produces temperature of compartment is 10.63°C indicates effective performance work-based thermoelectric applications.

Electronic devices and instruments generate heat that can cause serious damage and low efficiency towards its components. The heat that the different electronic elements and components emit can decrease both efficiency and life capacity of the device. And with the increase of use of electronic devices in industries and processes, heat dissipation in electronic devices should be taken into strict consideration. This study aims to develop a cooling system under vapor compression refrigeration system. The prototype fabricated was designed for the cooling system of two Central Processing Units of desktop computer which can be as good equivalent for the electronic devices in industries. Though ventilation was present in the processing units, certain condition such as condition in surroundings can be of great help to improve the device efficiency. This study also aims to analyze the CPU’s efficiency in relation to lowering ventilation temperatures. The vapor compression refrigeration system will be the main device used for lowering and maintaining a suitable temperature inside the CPU casing. The system works like a centralized air-conditioning system wherein the air from the surroundings will be cooled down by the evaporator in the vapor compression refrigeration system. The cooled air will then be delivered to the CPU through the installed air ducting connections. The recording of CPU’s efficiency is provided by the installed software. It also measures the air conditioned parameters and computation of the CPU power consumption. The results from the test and the analysis of the gathered data showed that 165 watts of heat dissipated was removed by the cooling system and the CPU performance index rose up from 424 to 446 with a discharge air temperature of 29.67 oC. Based from the result, the fabricated binary cooling system is efficient enough to increase the performance index of the CPU and absorbing heat dissipated by the device


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 946
Author(s):  
Bartosz Gil ◽  
Anna Szczepanowska ◽  
Sabina Rosiek

In this work, which is related to the current European Parliament Regulation on restrictions affecting refrigeration, four new three-component refrigerants have been proposed; all were created using low Global Warming Potential(GWP) synthetic and natural refrigerants. The considered mixtures consisted of R32, R41, R161, R152a, R1234ze (E), R1234yf, R1243zf, and RE170. These mixtures were theoretically tested with a 10% step in mass fraction using a triangular design. The analysis covered two theoretical cooling cycles at evaporating temperatures of 0 and −30 °C, and a 30 °C constant condensing temperature. The final stage of the work was the determination of the best mixture compositions by thermodynamic and operational parameters. R1234yf–R152a–RE170 with a weight share of 0.1/0.5/0.4 was determined to be the optimal mixture for potentially replacing the existing refrigerants.


Sign in / Sign up

Export Citation Format

Share Document