Out-of-Plane Stability Analysis of I-Section Steel Arch

2013 ◽  
Vol 405-408 ◽  
pp. 781-785
Author(s):  
Kuan Tang Xi ◽  
Jin Li ◽  
Tie Gang Zhou ◽  
Tao Lin

Finite element model which can reflect the effects of different loading positions were constructed with Beam 188. Effects of different restraints, load models and rise-span ratios on out-of-plane buckling were studied by comparing results of fixed arches with that of pin-end arches under three loading models. It is conservative to design by employing results of radial loading. For ideal restraints, out-of-plane stability of pin-end arches is better than fixed arches when rise-span ratio is big. Effects of different loading positions on out-of-plane buckling were studied. Buckling loads of arches which are loaded at arch-axises are bigger than those of top flanges, but smaller than those of bottom flanges.

2013 ◽  
Vol 351-352 ◽  
pp. 169-173
Author(s):  
Kuan Tang Xi ◽  
Jin Li ◽  
Tie Gang Zhou ◽  
Qing Xing Xu

Two kinds of finite element model which can reflect the effects of different loading positions were constructed with Beam 188 and Shell 181. Effects of different restraints, load models and rise-span ratios on out-of-plane buckling were studied by comparing results of fixed arches with that of pin-end arches under three loading models. It is conservative to design by employing results of radial loading. As for out-of-plane stability, pin-end arches are better than fixed arches when rise-span ratio is big. Compared with U-section pin-end circular arches with diaphragm, those with batten plates have batter out-of-plane stability, and they are more economical and easier to construct.


Author(s):  
Daniel E. Jordy ◽  
Mohammad I. Younis

Squeeze film damping has a significant effect on the dynamic response of MEMS devices that employ perforated microstructures with large planar areas and small gap widths separating them from the substrate. Perforations can alter the effect of squeeze film damping by allowing the gas underneath the device to easily escape, thereby lowering the damping. By decreasing the size of the holes, the damping increases and the squeeze film damping effect increases. This can be used to minimize the out-of-plane motion of the microstructures toward the substrate, thereby minimizing the possibility of contact and stiction. This paper aims to explore the use of the squeeze-film damping phenomenon as a way to mitigate shock and minimize the possibility of stiction and failure in this class of MEMS devices. As a case study, we consider a G-sensor, which is a sort of a threshold accelerometer, employed in an arming and fusing chip. We study the effect of changing the size of the perforation holes and the gap width separating the microstructure from the substrate. We use a multi-physics finite-element model built using the software ANSYS. First, a modal analysis is conducted to calculate the out-of-plane natural frequency of the G-sensor. Then, a squeeze-film damping finite-element model, for both the air underneath the structure and the flow of the air through the perforations, is developed and utilized to estimate the damping coefficients for several hole sizes. Results are shown for various models of squeeze-film damping assuming no holes, large holes, and assuming a finite pressure drop across the holes, which is the most accurate way of modeling. The extracted damping coefficients are then used in a transient structural-shock analysis. Finally, the transient shock analysis is used to determine the shock loads that induce contacts between the G-sensor and the underlying substrate. It is found that the threshold of shock to contact the substrate has increased significantly when decreasing the holes size or the gap width, which is very promising to help mitigate stiction in this class of devices, thereby improving their reliability.


Author(s):  
Mostafa Habibi ◽  
Ramin Hashemi ◽  
Ahmad Ghazanfari ◽  
Reza Naghdabadi ◽  
Ahmad Assempour

Forming limit diagram is often used as a criterion to predict necking initiation in sheet metal forming processes. In this study, the forming limit diagram was obtained through the inclusion of the Marciniak–Kaczynski model in the Nakazima out-of-plane test finite element model and also a flat model. The effect of bending on the forming limit diagram was investigated numerically and experimentally. Data required for this simulation were determined through a simple tension test in three directions. After comparing the results of the flat and Nakazima finite element models with the experimental results, the forming limit diagram computed by the Nakazima finite element model was more convenient with less than 10% at the lower level of the experimental forming limit diagram.


Author(s):  
Olaf O. Otte Filho ◽  
Rafael L. Tanaka ◽  
Rafael G. Morini ◽  
Rafael N. Torres ◽  
Thamise S. V. Vilela

In the design of flexible pipes, predict the anchoring behavior on end fittings is always challenging. In this sense, Prysmian Surflex has developed a finite element model, which should help the end fitting design as well the prediction of the structural behavior and the acceptable maximum loads. The current model considers that the contact between armor-resin is purely cohesive and has been suitable for the design of end fittings [1] and [2]. But tests and new studies [3] and [4] indicate that only cohesive assumption would not be the best approach. Experimental data from prototype tests also show that the current model would not predict acceptable results for loads higher than those used in previous projects. This document will describe a study developed considering the friction and thermal contraction, instead of the cohesive phenomenon in the anchoring behavior analysis. Small scale tests were conducted in order to understand the anchoring relation between the resin and the wire used in the tensile armor. For this purpose, a special test device was developed to simulate an enclosure system. A parametric study was also performed to identify the cooling temperatures, coefficients of friction and contact properties parameters taken from small scale tests. The finite element model considers the thermal effects during exothermic curing. Using the new parameters obtained, a second model was developed. This model consists of only one real shaped bended wire inside an end fitting cavity. To validate the model, samples were tested on laboratory according anchoring design. The results of this round of tests were studied and corroborate the argument that use friction and thermal effects is better than use only the cohesive condition.


2011 ◽  
Vol 94-96 ◽  
pp. 1818-1823
Author(s):  
Guang Sheng Bian ◽  
Qiang Jia ◽  
An Ying Chen ◽  
Fang Gu

There were four collapse accidents of fastener-style steel tubular formwork support being investigated in the article. The collapse mechanism was researched. According to the collapse accidents, the finite element model was established. The whole stability analysis was done. The analytical results were the same with the conditions of accidents. The collapse mechanism was verified. According to the collapse mechanism, the security technical measures of high formwork support were put forward.


2003 ◽  
Vol 40 (02) ◽  
pp. 82-92
Author(s):  
Richard Woytowich

Beginning with an overview of riveted joint construction, this paper shows that the efficiency of riveted joints in pre-World War I ships decreased as plate thickness increased. In the case of the RMS Titanic, some of the joints involved in the iceberg impact were only about 27% as strong as the plates they connected. A finite element model is used to show how such a joint would respond to the sort of out-of-plane load that the iceberg would have applied. For one possible load configuration, the joint failure is recreated. Finally, although Titanic and her sisters were not built to class, the design of the riveted joints is examined in the context of relevant Lloyd's Register of Shipping Rules.


Sign in / Sign up

Export Citation Format

Share Document