Analysis of Cold Preforming Process for Hollow Fasteners with Thin Flange

2013 ◽  
Vol 418 ◽  
pp. 246-249
Author(s):  
Ting Ping Chang ◽  
Shyh Chour Huang ◽  
Te Fu Huang ◽  
Thanh Phong Dao

This paper aims to study and detect the imperfects of the hollow fasteners with thin flange during cold forging process. In this study, the finite element analysis (FEA) based on 3-D DEFORMTM software to investigate the plastic deformation behavior of the hollow fasteners with thin flange. The simulation results showed that there is a folding phenomenon, which is occurring in the forming process. As a result, it revealed that with using FEA, the imperfects of forming hollow fasteners with the thin flange can be correctly predicted. From that, the occurrence of defects can be effectively prevented in the actual fabricating process. Future work will include an investigation into the optimization of the mold geometric parameters during cold pre-forming process for hollow fasteners with thin flange by comparing the simulative and experimental results.

2015 ◽  
Vol 809-810 ◽  
pp. 235-240
Author(s):  
Catalina Maier ◽  
Robin Gauthier

Roller leveling is a forming process which used to minimize flatness imperfection and residual stresses by repeated forming process of a sheet metal. The determination of the machine settings must be very accurate and ask a precise mechanical study. In order to determine an algorithm which can predict the leveling quality according to the machine settings we start by a theoretical model of stress evolution during the process. The plastification ratio is deducted from this one and the values obtained by this approach are compared whit experimental values. The finite element analysis is performed, in second step in order to assure a good accuracy of the prediction algorithm. Theoretical study determines a minimum of the plastification ratio according to the machine settings. The finite element analysis gives more accurate results due to the consideration of different characteristics of the process, neglected by the theoretical model: cumulative effect of bending/unbending with stretching of the sheet during the passing between each couple of rolls, boundary conditions at the limit of the material deformed by two adjoining couples of rolls, friction force.


2012 ◽  
Vol 430-432 ◽  
pp. 1056-1059
Author(s):  
Xiao Gang Qiu ◽  
Hao Huang

The dynamic explicit finite element software DYNAFORM was used to simulate the real and equivalent drawbead model. Analyzed the influence of the blank hold force (BHF) and virtual velocity on blank’s deformation behavior after passing through drawbead, compared the results of the FE simulation. The simulation results were confirmed by experiments. The study shows that the equivalent drawbead model can’t simulate the blank’s behavior precisely when it passing the real drawbeads, the effect of BHF on real drawbead model is larger than equal drawbead model; the proper range of virtual velocity was obtained at the same time.


2007 ◽  
Vol 546-549 ◽  
pp. 1563-1566
Author(s):  
Min Li ◽  
Bao Yan Zhang ◽  
Xiang Bao Chen

Unsymmetric composite laminates were benefit to reducing the structure weight of some aircrafts. However, the cured unsymmetric laminates showed distortion at room temperature. Therefore, predicting the deformation before using the unsymmetrical composite is very important. In this study an attempt was made to predict the shapes of some unsymmetric cross-ply laminates using the finite element analysis (FEA). The bilinear shell-element was adopted in the process. Then the simulation results were compared with the experimental data. The studies we had performed showed that the theoretical calculation agreed well with the experimental results, the predicted shapes were similar to the real laminates, and the difference between the calculated maximum deflections and the experimental data were less than 5%. Hence the FEA method was suitable for predicting the warpage of unsymmetric laminates. The error analysis showed that the simulation results were very sensitive to the lamina thickness, 2 α and (T.


2021 ◽  
Vol 328 ◽  
pp. 07003
Author(s):  
Cipto Cipto ◽  
Klemens A. Rahangmetan ◽  
Christian Wely Wullur ◽  
Farid Sariman ◽  
Hariyanto Hariyanto

This study analyzes the maximum load on the shaft construction with a diameter of 12 mm and a length of 581 mm. The shaft is designed as a shaft for cutting meat with a capacity of 5 kg. The analysis was performed using the finite element analysis method included in the Autodesk software. According to mathematical calculations, the shaft is considered safe because the value of the admissible tension τa = 7.380 kg / mm2 is greater than the maximum tension τp 5.62 kg / mm2. Based on the simulation results of the test, the shaft experiences a maximum off-stress of 61.89 MPa, a maximum displacement of 0.07715 mm, , and a safety factor of 3.34 µl so that the shaft is classified as safe for use with a Load capacity of 5 Kg


2011 ◽  
Vol 460-461 ◽  
pp. 44-47
Author(s):  
Wei Hua Kuang

The cold expanding diameter process was simulated by the software of DEFORM. The finite element model of tube and dies were built. The object position definition, the inter object setting, movement definition and simulation step were correctly set. The deformation, total velocity distribution and equivalent stress distribution were predicted. The numerical simulation results showed that the finite element analysis could exactly describe the plastic deformation and stress distribution during the forming process.


2013 ◽  
Vol 706-708 ◽  
pp. 1140-1145
Author(s):  
Fang Liu ◽  
Wen Ming Cheng ◽  
Yi Zhou

Since the posture of portable exoskeleton is consistent with human motion and each joint degree of freedom is same, on the basis of DOF coupling in portable exoskeleton, the finite element analysis of the mechanical structure in portable exoskeleton has been calculated. According to the anthropomorphic mechanism design method, the universal joint structure has been used to meet the requirements of degrees of freedom in the mechanical structure of the exoskeleton; using the Hydraulic cylinder to simulate the contraction or stretch of human muscle, and the three-dimensional model of the exoskeleton mechanical systems has been created with the Solidworks software; selecting Human CAD software and setting the parameters of the movement of the human body model, the variations of the various joints can be obtained; using the Parasolid as the standard format for data transfer between the two software Solidworks and ANSYS, the finite element analysis model was established, and according to the principle of coupling, the three translational DOF and two rotating DOF was coupled, besides through both legs vertical standing, one knee kneeling, and one leg vertical standing three conditions, the exoskeleton strength was analyzed. The simulation results show that under the three conditions, a concentrated stress all has been found in the exoskeleton structure, besides the concentrated stresses all have been obtained in the cross-section changing site or the junction of the two components, which stress values exceeded the allowable stress values of the aluminum alloy material, so the suggestions for improvement of the structure are put forward in the article; at the same time, the simulation results provide a numerical basis for the optimization of the portable exoskeleton structure.


2011 ◽  
Vol 422 ◽  
pp. 438-442
Author(s):  
Mei Fa Huang ◽  
Wei Zhao Luo ◽  
Guang Qian

Propeller is one of the critical parts in garbage powder mixer and affect significantly to the performance. In order to obtain a more reasonable structure, force analysis and stress analysis is carrier out for the propeller based on the actual working condition. Optimal design for the propeller is implemented by the results of stress analysis. To verify the rationality and feasibility of this mechanism, the finite element analysis for the propeller is performed by using the ANASYS software. The simulation results show that the maximum stress of the propeller is on the joint of blade and rod. The optimized propeller is satisfied with the strength requirements.


2012 ◽  
Vol 579 ◽  
pp. 269-277 ◽  
Author(s):  
Chi Chen Huang ◽  
Hsin Yen Fan ◽  
Ching Hua Hung ◽  
Jung Chung Hung ◽  
Chia Rung Lin

Tube spinning is a metal forming process used to manufacture axisymmetric products. This study chose a seamless thick-walled steel tube to manufacture a high pressure vessel. Finite element analysis was successfully applied to the neck-spinning process of a thin-walled tube; however, previous research has not investigated the neck-spinning process of thick-walled tubes. Therefore, the aim of this research was to investigate numerically the neck-spinning process of thick-walled tubes at an elevated temperature. The commercial software Abaqus/Explicit was adopted in the simulation. This paper compares experimental and simulation results on thickness distribution and outer contour of the spun tube. During the final stage, the average deviations between the simulation and experiment were 6.74% in thickness and 4.97% in outer contour. The simulation results correspond with those derived in the experiment.


Sign in / Sign up

Export Citation Format

Share Document