Hermetically Metal Sealing Random Vibration Damage Mechanism and Fatigue Life Prediction

2013 ◽  
Vol 423-426 ◽  
pp. 1501-1505 ◽  
Author(s):  
Teng Han ◽  
Xiao Qi He ◽  
Yun Fei En

Finite element simulation method of random vibration analysis was used for hermetically metal sealing. According to the results of the random vibration analysis and the theory of fatigue fracture mechanics, the hermetically metal sealing on the PCB plate cracking damage mechanism was analyzed. The danger point of the Von Mises stress was obtained, and the Von Mises stress - time history data was accessed through inverse Fourier transformation. And rain flow count method was used to calculate Von Mises stress-time history data of cycle count. The linear cumulative damage theory and the material S-N curve were used to calculate the fatigue life of Hermetically metal sealing.

2013 ◽  
Vol 455 ◽  
pp. 310-313
Author(s):  
Er Ming He ◽  
Ge Liang Yin ◽  
Ya Qi Hu

In order to study the random vibration responses of satellite-borne equipment, the finite element model of satellite-borne equipment was established and its random vibration analysis was performed by ANSYS. The results showed that the stress of key part was too large to meet the strength requirement. The structural design was modified based on the stress analysis results. At the cost of adding 1.03% weight, we find the fundamental frequency of the modified model is increased by 14% and the maximum 1˰σ von Mises stress is decreased by 30%, which verify the correctness of the modification method. This analysis and modification method also can be applied to modify other satellite-borne equipments to shorten the development period and reduce the design cost.


1998 ◽  
Vol 5 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Mu-Tsang Chen ◽  
Ronald Harichandran

Finite element-based random vibration analysis is increasingly used in computer aided engineering software for computing statistics (e.g., root-mean-square value) of structural responses such as displacements, stresses and strains. However, these statistics can often be computed only for Cartesian responses. For the design of metal structures, a failure criterion based on an equivalent stress response, commonly known as the von Mises stress, is more appropriate and often used. This paper presents an approach for computing the statistics of the von Mises stress response for structures subjected to random excitations. Random vibration analysis is first performed to compute covariance matrices of Cartesian stress responses. Monte Carlo simulation is then used to perform scatter and failure analyses using the von Mises stress response.


1986 ◽  
Vol 108 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Thomas T. Baber ◽  
Mohammed N. Noori

A simple constructive technique for the development of rate-type hysteresis models for general nonlinear system is presented. The technique is used to develop hysteresis models to incorporate time history-dependent postyield restorting forces, and general pinching behavior in smoothly varying deteriorating models. Applications of these models to random vibration analysis modeling via simulation and equivalent linearization techniques under Gaussian noise excitation is presented.


1988 ◽  
Vol 110 (2) ◽  
pp. 205-209
Author(s):  
A. V. Singh

This paper presents the random vibration analysis of a simply supported cylindrical shell under a ring load which is uniform around the circumference. The time history of the excitation is assumed to be a stationary wide-band random process. The finite element method and the condition of symmetry along the length of the cylinder are used to calculate the natural frequencies and associated mode shapes. Maximum values of the mean square displacements and velocities occur at the point of application of the load. It is seen that the transient response of the shell under wide band stationary excitation is nonstationary in the initial stages and approaches the stationary solution for large value of time.


ICTE 2015 ◽  
2015 ◽  
Author(s):  
Hanfei Guo ◽  
Xiaoxue Liu ◽  
Wei Tong ◽  
Youwei Zhang ◽  
Yanlei Zhang

Sign in / Sign up

Export Citation Format

Share Document