ECM Parameters Modeling and Optimization Using WSGA

2013 ◽  
Vol 423-426 ◽  
pp. 925-930 ◽  
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Electrochemical machining (ECM) is a non tradition process used for the machining of metal matrix composites. Metal matrix composites are used for applications in aero scope, automobile industries and medical field. Determination of optimal process parameter is difficult in ECM machining process for obtaining maximum Material Removal Rate (MRR) and good Surface Roughness (SR).The multiple regression model was used to obtain the relationship between process parameters and output parameters and Weighted Sum Genetic Algorithm (WSGA) optimization was proposed to optimize the ECM process parameter. .The Voltage, Current, Feed Rate and Electrolyte Concentration are considered as decision variables, MRR and SR are the machining parameters used in the proposed work.

2020 ◽  
Vol 12 (3) ◽  
pp. 229-234
Author(s):  
S. SURESH KUMAR ◽  
Anish NAIR ◽  
G. Praveen MUTHU KUMAR ◽  
V. MUTHU KRISHNAN ◽  
M. RAMESH KANNA

The use of unconventional machining technique for Aluminum based Metal Matrix Composites [MMCs] are generated considerable interest in machining. In the aviation industry, in order to obtain a high precision, a good surface finishing and high working speed, the processing of these hard materials is done with the help of the fiber beam laser). The objective is to determine the mechanical properties of the hybrid composite and further investigate its machinability. The aerospace industry uses the laser machining for its machining process like drilling the cooling holes etc. Standard frequency and variation in other parameters such as pulse width, power, and time will occur the impact in the laser beams composites like diameter and roundness of the hole. Especially, the increase in the variation of power and time plays a vital role in the diameter and roundness of the hole.


2021 ◽  
Vol 309 ◽  
pp. 01156
Author(s):  
Bikash Banerjee ◽  
Arindam Chakraborty ◽  
Somnath Das ◽  
Debabrata Dhupal

Metal matrix is highly acceptable composites providing good strength for industrial use. In many field of industries, especially aerospace industry metal matrix composites of type Al/SiC is used because of its superior properties. In this research work, experimentalanalysis has been done for producing through hole on metal matrix composites with suitable quality ultrasonic machining (USM) process. Three unconstrained process parameters are chosen, like abrasive slurry concentration, power rating sand tool feed rate. Material removal rate (MRR) is considered as response parameter. The effects of each parameter have been analyzed here. Analysis of variance (ANOVA) has also been applied to identify the most significant factor. Response surface methodology (RSM) has been utilized to developed empirical model for determine the performance of ultrasonic process. Optimization technique has been used to find out the maximum process MRR. Confirmation verification test has been done to improve optimal parametric condition for getting maximum MRR. This research paper gives viability application of USM process for producing of through hole on metal matrix composites and various applications in industry.


Author(s):  
N. G. Patil ◽  
P. K. Brahmankar ◽  
L. G. Navale

Non-traditional process like wire electro-discharge machining (WEDM) is found to show a promise for machining metal matrix composites (MMCs). However, the machining information for the difficult-to-machine particle-reinforced material is inadequate. This paper is focused on experimental investigation to examine the effect of electrical as well as nonelectrical machining parameters on performance in wire electro-discharge machining of metal matrix composites (Al/Al2O3p). Taguchi orthogonal array was used to study the effect of combination of reinforcement, current, pulse on-time, off-time, servo reference voltage, maximum feed speed, wire speed, flushing pressure and wire tension on kerf width and cutting speed. Reinforcement percentage, current, on-time was found to have significant effect on cutting rate and kerf width. The optimum machining parameter combinations were obtained for cutting speed and kerf width separately.


2018 ◽  
Vol 22 ◽  
pp. 47-54 ◽  
Author(s):  
Mukesh Chaudhari ◽  
M. Senthil Kumar

Aluminum based metal matrix composites (AMMC) have found its applications in the automobile, aerospace, medical, and metal industries due to their superior mechanical properties. Fabricated Aluminum based metal matrix composites require machining to improve the surface finish and dimensional tolerance. Machining should be accomplished by good surface finish by consuming lowest energy and less tool wear. This paper reviews the machining of Aluminum based metal matrix composites to investigate the effect of process parameters such as tool geometry, tool wear, surface roughness, chip formation and also process parameters.


Sign in / Sign up

Export Citation Format

Share Document