The Identification of EEG Feature Evoked by Imaginary Movement

2013 ◽  
Vol 427-429 ◽  
pp. 2059-2063
Author(s):  
Xiao Yan Qiao ◽  
Chun Hui Wang

Aiming to the ERD/ERS phenomenon of left-right hand imaginary movement, this paper presents a method of wavelet transform combined with statistical analysis to extract EEG features evoked by imaginary movement. And the features were classified using the support vector machine based on RBF kernel and cross-validation accuracy (CVA) method. The results have shown that this method can perform effectively to extract features and reflect ERS and ERD characteristics of EEG signal. The accuracy of classification can reach 90% within the time costing 3.5 seconds. The highest signal to noise ratio is 1.445, and the maximum mutual information is 0.645bit. The results can meet the real-time brain-computer interface system.

2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Ahmad Reza Musthafa ◽  
Handayani Tjandrasa

Abstract. Electroencephalogram (EEG) signals has been widely researched and developed in many fields of science. EEG signals could be classified into useful information for the application of Brain Computer Interface topic (BCI). In this research, we focus in a topic about driving a car using EEG signal. There are many approaches in EEG signal classification, but some approaches do not robust EEG signals that have many artifacts and have been recorded in real time. This research aims to classify EEG signals to obtain more optimal results, especially EEG signals with many artifacts and can be recorded in realtime. This research uses Emotiv EPOC device to record EEG signals in realtime. In this research, we propose the combination of Automatic Artifact Removal (AAR) and Support Vector Machine (SVM) which has 71% of accuracy that can be applied to drive a virtual car.Keyword: EEG signal classification, automatic artifact removal, brain computer interface Abstrak. Penelitian berbasis sinyal Electroencephalogram (EEG) telah banyak diteliti dan dikembangkan pada berbagai bidang ilmu pengetahuan. Sinyal EEG dapat diklasifikasikan ke dalam bentuk informasi untuk pengaplikasian topik Brain Computer Interface (BCI). Pada penelitian ini difokuskan pada topik pengendalian mobil menggunakan perintah sinyal EEG. Terdapat beberapa pendekatan dalam klasifikasi sinyal EEG, tetapi beberapa pendekatan tersebut tidak robust terhadap sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini bertujuan untuk mengklasifikasikan sinyal EEG dengan hasil lebih optimal, khususnya pada sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini menggunakan perangkat Emotiv EPOC untuk merekam sinyal EEG secara realtime. Pada penelitian ini diusulkan kombinasi Automatic Artifact Removal (AAR) dan Support Vector Machine (SVM) yang menghasilkan hasil akurasi sebesar 71% untuk klasifikasi sinyal EEG pada kasus pengendalian mobil virtual.Kata Kunci: EEG signal classification, automatic artifact removal, brain computer interface


2013 ◽  
Vol 310 ◽  
pp. 660-664 ◽  
Author(s):  
Zi Guang Li ◽  
Guo Zhong Liu

As an emerging technology, brain-computer interface (BCI) bring us a novel communication channel which translate brain activities into command signals for devices like computer, prosthesis, robots, and so forth. The aim of the brain-computer interface research is to improve the quality life of patients who are suffering from server neuromuscular disease. This paper focus on analyzing the different characteristics of the brainwaves when a subject responses “yes” or “no” to auditory stimulation questions. The experiment using auditory stimuli of form of asking questions is adopted. The extraction of the feature adopted the method of common spatial patterns(CSP) and the classification used support vector machine (SVM) . The classification accuracy of "yes" and "no" answers achieves 80.2%. The experiment result shows the feasibility and effectiveness of this solution and provides a basis for advanced research .


Author(s):  
Mamunur Rashid ◽  
Norizam Sulaiman ◽  
Mahfuzah Mustafa ◽  
Mohd Shawal Jadin ◽  
Muhd Sharfi Najib ◽  
...  

Author(s):  
Wei-Yen Hsu

In this chapter, a practical artifact removal Brain-Computer Interface (BCI) system for single-trial Electroencephalogram (EEG) data is proposed for applications in neuroprosthetics. Independent Component Analysis (ICA) combined with the use of a correlation coefficient is proposed to remove the EOG artifacts automatically, which can further improve classification accuracy. The features are then extracted from wavelet transform data by means of the proposed modified fractal dimension. Finally, Support Vector Machine (SVM) is used for the classification. When compared with the results obtained without using the EOG signal elimination, the proposed BCI system achieves promising results that will be effectively applied in neuroprosthetics.


Author(s):  
Noran Magdy El-Kafrawy ◽  
Doaa Hegazy ◽  
Mohamed F. Tolba

BCI (Brain-Computer Interface) gives you the power to manipulate things around you just by thinking of what you want to do. It allows your thoughts to be interpreted by the computer and hence act upon it. This could be utilized in helping disabled people, remote controlling of robots or even getting personalized systems depending upon your mood. The most important part of any BCI application is interpreting the brain signalsasthere are many mental tasks to be considered. In this chapter, the authors focus on interpreting motor imagery tasks and more specifically, imagining left hand, right hand, foot and tongue. Interpreting the signal consists of two main steps: feature extraction and classification. For the feature extraction,Empirical Mode Decomposition (EMD) was used and for the classification,the Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel was used. The authors evaluated this system using the BCI competition IV dataset and reached a very promising accuracy.


Author(s):  
Ling Zou ◽  
Xinguang Wang ◽  
Guodong Shi ◽  
Zhenghua Ma

Accurate classification of EEG left and right hand motor imagery is an important issue in brain-computer interface. Firstly, discrete wavelet transform method was used to decompose the average power of C3 electrode and C4 electrode in left-right hands imagery movement during some periods of time. The reconstructed signal of approximation coefficient A6 on the sixth level was selected to build up a feature signal. Secondly, the performances by Fisher Linear Discriminant Analysis with two different threshold calculation ways and Support Vector Machine methods were compared. The final classification results showed that false classification rate by Support Vector Machine was lower and gained an ideal classification results.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 988
Author(s):  
Ho-Seung Cha ◽  
Chang-Hee Han ◽  
Chang-Hwan Im

With the recent development of low-cost wearable electroencephalogram (EEG) recording systems, passive brain–computer interface (pBCI) applications are being actively studied for a variety of application areas, such as education, entertainment, and healthcare. Various EEG features have been employed for the implementation of pBCI applications; however, it is frequently reported that some individuals have difficulty fully enjoying the pBCI applications because the dynamic ranges of their EEG features (i.e., its amplitude variability over time) were too small to be used in the practical applications. Conducting preliminary experiments to search for the individualized EEG features associated with different mental states can partly circumvent this issue; however, these time-consuming experiments were not necessary for the majority of users whose dynamic ranges of EEG features are large enough to be used for pBCI applications. In this study, we tried to predict an individual user’s dynamic ranges of the EEG features that are most widely employed for pBCI applications from resting-state EEG (RS-EEG), with the ultimate goal of identifying individuals who might need additional calibration to become suitable for the pBCI applications. We employed a machine learning-based regression model to predict the dynamic ranges of three widely used EEG features known to be associated with the brain states of valence, relaxation, and concentration. Our results showed that the dynamic ranges of EEG features could be predicted with normalized root mean squared errors of 0.2323, 0.1820, and 0.1562, respectively, demonstrating the possibility of predicting the dynamic ranges of the EEG features for pBCI applications using short resting EEG data.


Sign in / Sign up

Export Citation Format

Share Document