Modal Analysis for the Powertrain of Electric Vehicle by Finite Element Method

2013 ◽  
Vol 437 ◽  
pp. 140-145
Author(s):  
Fei Fei Chen ◽  
Peng Yu ◽  
Tong Zhang

The finite element model of an electric automotive powertrain is the basis of the research on its vibration and noise. In this paper, the vibration properties of dynamically-loaded housing are first obtained based on finite element calculation,which is testified by the modal test .It provides the reference for the establishing of electric automotive powertrain.

2014 ◽  
Vol 900 ◽  
pp. 742-745 ◽  
Author(s):  
Yao Jie He ◽  
Bai Jing Qiu ◽  
Ya Fei Yang

In order to attenuate the deformation of spray boom, a finite element model built based on ANSYS, according to the reasults of numerical modal analysis and modal texting, the reliability of the finite element model was affirmed. Then, an isolator was introduced between spray boom and frame, a frame-isolator-spray boom model was built in ADAMS. The effect of the isolators which have different parameters was research, the reasult shows: The isolator has much effect on attenuating spray booms deformation, the stiffness of isolators spring dampers has little effect on spray booms deformation, but the damping of isolators spring dampers has effect on spray booms deformation.


2014 ◽  
Vol 551 ◽  
pp. 444-447
Author(s):  
Sheng Lin ◽  
Xi Kong ◽  
Chun Wang

Based on the method of Freedom and Constraint Topology (FACT), a compliant mechanism with 3 degrees of freedom is designed. The 3 DOF are one movement and two rotations, which belongs to Case 3, Type 2. The whole stiffness matrix of the compliant mechanism is obtained. The finite element model is established for statics analysis. The results of theory analysis and finite element method are closed.


2014 ◽  
Vol 496-500 ◽  
pp. 601-604
Author(s):  
Jing Wang ◽  
Yong Wang ◽  
Ying Hua Liao

In this paper, the modal of motorcycle frame is analyzed by using the analytic method and experimental method. The results show that the dynamic properties of the finite element model are in good agreement with the experiment and the finite element model was reliable and accurate.


2012 ◽  
Vol 487 ◽  
pp. 879-883
Author(s):  
Jiang Wei Wu

With the port crane getting bigger and heavier, and also moving much faster than before, the thermal effect in wheel and rail during the brake process can be a reason of the failure of port crane. In this paper, the thermal effect during the brake process of port crane is studied using the finite element method. Based on the finite element model, the ANSYS10.0 finite element software is used. The thermal effects under different coefficients are discussed. Three different slide speed of wheel, two different loads of crane, and three different frictional coefficients are applied. The importance of the different coefficients is obtained from the numerical results.


2011 ◽  
Vol 101-102 ◽  
pp. 1002-1005 ◽  
Author(s):  
Jing Zhao ◽  
Li Qun Lu

The process of multi-wedge cross wedge rolling is an advanced precision technology for forming long shaft parts such as automobile semi-axes. Three-dimensional solid model and the finite element model of semi-axes on automobile and dies of its cross wedge rolling were established. The process of cross wedge rolling was simulated according to the actual dimension of semi-axes on automobile utilizing the finite element method (FEM)software ANSYS/LS-DYNA. The required force parameters for designing semi-axes mill are determined. The appropriate roller width was determined according to the length and diameter of semi-axes on automobile. The results have provided the basis for the design of specific structure of automobile semi-axes cross wedge rolling mill.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


Author(s):  
Andrew Melro ◽  
Kefu Liu

This paper explores the applicability of using the multiphysics finite element method to model a piezoelectric energy harvester. The piezoelectric energy harvester under consideration consists of a stainless-steel cantilever beam attached by a piezoelectric ceramic patch. Two configurations are considered: one without a proof mass and one with a proof mass. Comsol Multiphysics software is used to simultaneously model three physics: the solid mechanics, the electrostatics, and the electrical circuit physics. Several key relationships are investigated to predict the behaviours of the piezoelectric energy harvester. The effects of the electrical load resistance and a proof mass on the performance of a piezoelectric energy harvester are evaluated. Experimental testing is conducted to validate the results found by the finite element model. Overall, the results from the finite element model closely match those from the experimental testing. It is found that increasing the load resistance of the piezoelectric energy harvester causes an increase in voltage across the load resistor, and matching the impedance yields the maximum power output. Increasing the proof mass reduces the fundamental frequency that results in an increase of the displacement transmissibility and the impedance matched resistance. The study shows that the multiphysics finite element method is effective to model piezoelectric energy harvesters.


2011 ◽  
Vol 120 ◽  
pp. 81-84
Author(s):  
Jian Hua Wang ◽  
Jian Hua ◽  
Chao Li

Fatigue rupture is the major reason of crankshaft parts failure. Traditional fatigue analysis is fairly complicated and causes a great error. The finite element model of s195 engine crankshaft is created under SolidWorks environment, whose static analysis and fatigue analysis is carried out by using Simulation module. Also the vibration character of the crankshaft is calculated through modal analysis. Result shows the fatigue strength of the crankshaft is enough and it will not produce resonance in operation.


2011 ◽  
Vol 354-355 ◽  
pp. 454-457
Author(s):  
Yuan Wang ◽  
Li Xu ◽  
Xi Liang Dai ◽  
Sheng Hui Peng

In this paper, the finite element model of some car’s body-in-white is established in Hypermesh. The model analysis is executed based on the element model in ANSYS. Through the model analysis the dynamic parameters of the body-in-white are obtained. At the same time,the modal test of a real car body is implemented. The reliability of the finite element model is validated based on the modal test. The results show that the stiffness of the body-in-white is great enough and it can provide optimal design for future designers.


2014 ◽  
Vol 578-579 ◽  
pp. 917-920
Author(s):  
Jiang Hua Lv ◽  
Jia Peng Shi ◽  
Wei Hua Zhu ◽  
Feng Zhu ◽  
Chang Yan

In this paper, using the finite element method,check for the Ken Swart project sand flushing water all operating tower in static stability. First of all, select unit and a calculation model, establish the finite element model; Then analys the displacement distribution and stress distribution of the structure in the five conditions.


Sign in / Sign up

Export Citation Format

Share Document