Effect of Lubricant in Output Parameters of Milling

2010 ◽  
Vol 44-47 ◽  
pp. 335-339
Author(s):  
Ramezan Ali Mahdavinejad

The usage of lubrication in machining processes especially in high speed milling is very important. In this research, some steel samples are machined with and without cooling lubricant conditions. In these cases, the material removal rate and surface finishing of machined surfaces are analyzed. The comparison between two conditions shows that the usage of lubricant as coolant material, improves the output machining parameters significantly.

2016 ◽  
Vol 836-837 ◽  
pp. 161-167
Author(s):  
Anna Thouvenin ◽  
Xin Li ◽  
Ning He ◽  
Liang Li

High speed milling is one of the most commonly used machining processes in many fields of the industry. It is regarded as a simple and fast solution to achieve a high material removal rate, which allows an important production of parts. Unbalance is a problem in any machining process but becomes a considerable problem when reaching high speed machining. The vibrations due to an unbalanced tool or tool holder can result in a poor surface quality and a damaged tool. The damping of the vibrations can be achieved with a specially designed tool showing an anti-vibration clearance angle. This paper shows the influence of the anti-vibration clearance angle by a computational model and a set of experiments to see if it can reduce or suppress the vibrations due to unbalance in high speed milling.


2010 ◽  
Vol 455 ◽  
pp. 190-193 ◽  
Author(s):  
Tong Wang ◽  
Feng Qiu ◽  
C.Q. Wang ◽  
G.Z. Zhang ◽  
Xiao Cun Xu

Comparing with conventional WEDM in emulsion, dry finishing of high-speed WEDM (HS-WEDM) has advantages such as higher material removal rate, better surface roughness and straightness. Authors have presented a new procedure as gas-liquid combined multiple cut, in which roughing is processed in dielectric liquid, and semi-finishing is in liquid or gas, while finishing is in gas. For better understanding the effect of machining parameters on surface roughness and cutting speed in dry finishing, a L25(56) Design was implemented. The analysis of variance shows that the effect of pulse duration on surface roughness is of high significance, and peak current is of significance respectively, and the effect of no load worktable feed on cutting speed is high significant.


2021 ◽  
Vol 2 (1) ◽  
pp. 212-221
Author(s):  
Sonja Jozić ◽  
◽  
Dražen Bajić ◽  
Ivana Dumanić ◽  
Željko Bagavac ◽  
...  

The required quality of the product arises from the customer preferences and functional requirements of the product and is determined mostly by the machining operation. Properly selected machining parameters in machining processes are of great importance for improving process efficiency and product quality. The aim of this paper is to find cutting parameters with which above mentioned process and product characteristics will be achieved. Experiments were performed according to Box-Behnken design of experiments. Influential input variables were cutting speed, feed per revolution and depth of cut and output variables were surface roughness, power consumption and material removal rate. Multi-objective optimization function was developed to find the machining parameters with which the lowest power consumption, the best surface quality and the greatest material removal rate will be achieved.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


1995 ◽  
Vol 117 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Z. J. Pei ◽  
D. Prabhakar ◽  
P. M. Ferreira ◽  
M. Haselkorn

An approach to modeling the material removal rate (MRR) during rotary ultrasonic machining (RUM) of ceramics is proposed and applied to predicting the MRR for the case of magnesia stabilized zirconia. The model, a first attempt at predicting the MRR in RUM, is based on the assumption that brittle fracture is the primary mechanism of material removal. To justify this assumption, a model parameter (which models the ratio of the fractured volume to the indented volume of a single diamond particle) is shown to be invariant for most machining conditions. The model is mechanistic in the sense that this parameter can be observed experimentally from a few experiments for a particular material and then used in prediction of MRR over a wide range of process parameters. This is demonstrated for magnesia stabilized zirconia, where very good predictions are obtained using an estimate of this single parameter. On the basis of this model, relations between the material removal rate and the controllable machining parameters are deduced. These relationships agree well with the trends observed by experimental observations made by other investigators.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2014 ◽  
Vol 592-594 ◽  
pp. 516-520 ◽  
Author(s):  
Basil Kuriachen ◽  
Jose Mathew

Micro EDM milling process is accruing a lot of importance in micro fabrication of difficult to machine materials. Any complex shape can be generated with the help of the controlled cylindrical tool in the pre determined path. Due to the complex material removal mechanism on the tool and the work piece, a detailed parametric study is required. In this study, the influence of various process parameters on material removal mechanism is investigated. Experiments were planned as per Response Surface Methodology (RSM) – Box Behnken design and performed under different cutting conditions of gap voltage, capacitance, electrode rotation speed and feed rate. Analysis of variance (ANOVA) was employed to identify the level of importance of machining parameters on the material removal rate. Maximum material removal rate was obtained at Voltage (115V), Capacitance (0.4μF), Electrode rotational Speed (1000rpm), and Feed rate (18mm/min). In addition, a mathematical model is created to predict the material removal


Sign in / Sign up

Export Citation Format

Share Document