Study on Data Management of High-Speed Railway Transport Equipment Based on Metadata

2010 ◽  
Vol 44-47 ◽  
pp. 3771-3775
Author(s):  
Chao Long Jia ◽  
Wei Xiang Xu ◽  
Han Ning Wang

Data platform of data sharing and service provide technical support for high-speed railway transportation organization, it provide data parameter and data support for high-speed railway operation management, and it plays an important role in promoting national economic development. In this paper, the metadata theory is used for data storage, data cataloging, data retrieval and data discovery in the management of the Beijing-Shanghai high-speed railway transportation equipment, analyze and propose key technologies of the establishment of data sharing platform based on metadata management of high-speed railway transportation equipment, correlation analysis is made and the result of analysis indicates that data platform can greatly improve the utilization and ability to obtain high-speed railway transportation equipment data. It can also improve the ability to support organizational decision-making of high-speed railway transportation.

Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Qin Zhang ◽  
Xiaoning Zhu ◽  
Li Wang ◽  
Shuai Wang

The optimization problems of train timetabling and platforming are two crucial problems in high-speed railway operation; these problems are typically considered sequentially and independently. With the construction of high-speed railways, an increasing number of interactions between trains on multiple lines have led to resource assignment difficulties at hub stations. To coordinate station resources for multiline train timetables, this study fully considered the resources of track segments, station throat areas, and platforms to design a three-part space-time (TPST) framework from a mesoscopic perspective to generate a train timetable and station track assignment simultaneously. A 0-1 integer programming model is proposed, whose objective is to minimize the total weighted train running costs. The construction of a set of incompatible vertexes and links facilitates the expression of difficult constraints. Finally, example results verify the validity and practicability of our proposed method, which can generate conflict-free train timetables with a station track allocation plan for multiple railway lines at the same time.


2019 ◽  
Vol 11 (24) ◽  
pp. 6996
Author(s):  
Shuo Zhao ◽  
Xiwei Mi ◽  
Zhenyi Li

Train stop planning provides appropriate service for travel demand and stations and plays a significant role in railway operation. This paper formulates stop planning from the point of view of direct travel between origin-destination (O-D) stations and proposes an analytical method to theoretically derive optimal service frequencies for O-D demand on different levels. Considering different O-D demand characteristics and train service types, we introduce the concept of stop probability to present the mathematical formulation for stop planning with the objective of minimizing per capita travel time, which is solved by an iterative algorithm combined with local search. The resulting optimal stop probabilities can be used to calculate the required service frequency for each train type serving different demand categories. Numerical examples, based on three real-life high-speed railway lines, demonstrate the validity of the proposed method. The proposed approach provides a more flexible and practical way for stop planning that explicitly takes into account the importance of different stations and passenger travel characteristics.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yun Wang ◽  
Yu Zhou ◽  
Xuedong Yan

As a sustainable transportation mode, high-speed railway (HSR) has been developing rapidly during the past decade in China. With the formation of dense HSR network, how to improve the utilization efficiency of train-sets (the carrying tools of HSR) has been a new research hotspot. Moreover, the emergence of railway transportation hubs has brought great challenges to the traditional train-sets’ utilization mode. Thus, in this paper, we address the issue of train-sets’ utilization problem with the consideration of railway transportation hubs, which consists of finding an optimal Train-set Circulation Plan (TCP) to complete trip tasks in a given Train Diagram (TD). An integer programming TCP model is established to optimize the train-set utilization scheme, aiming to obtain the one-to-one correspondence relationship among sets of train-sets, trip tasks, and maintenances. A genetic algorithm (GA) is designed to solve the model. A case study based on Nanjing and Shanghai HSR transportation hubs is made to demonstrate the practical significance of the proposed method. The results show that a more efficient TCP can be formulated by introducing train-sets being dispatched among different stations in the same hub.


2019 ◽  
Vol 11 (7) ◽  
pp. 2141
Author(s):  
Xueqiao Yu ◽  
Maoxiang Lang ◽  
Wenhui Zhang ◽  
Shiqi Li ◽  
Mingyue Zhang ◽  
...  

The rapid and stable development of China’s economy has driven the increasing demand for express transportation. Based on network operation, China Railway Corporation of High-speed Railway launched high-speed rail products, which have attracted wide attention from all walks of life. With the application of high-speed express trains, the market structure of express transportation in China will change dramatically, from highways as the main mode of transportation to high-speed railway transportation relying on a high-speed railway network, which will effectively reduce the environmental pollution caused by express transportation and further improve the sustainable development of the economy and the logistics industry. At present, the freight Electric Multiple Units (EMU) has been successfully developed and has entered the final test stage. In the last paper, we have introduced the theory and method of the high-speed rail express train operation plan. In addition, a train diagram is an important foundation of railway transportation organization. In order to ensure the sustainable development of high-speed rail express trains after they are put into use, based on the operation plan of high-speed rail express trains, this paper establishes a comprehensive compilation model of a high-speed rail express train diagram, considering train running time, freight flow distribution scheme, and the operation plan of freight multiple units, and an exact solution algorithm based on the Lagrange relaxation algorithm is designed. The computational results are encouraging and demonstrate the effectiveness of the model and solution method.


Sign in / Sign up

Export Citation Format

Share Document