Numerical Solution for Weight Function of Electromagnetic Flowmeter Using Finite Element Method

2013 ◽  
Vol 444-445 ◽  
pp. 1360-1363
Author(s):  
Kai Xia Wei

Weight function is related with the sensor structure of electromagnetic flowmeter (EMF). Because of complex boundary conditions, it is difficult to solve the voltage differentiation equation of EMF directly to get weight function. The finite element numerical analysis method is tried to solve the weight function for the point and large-electrode EMF in this paper. The results prove it is feasible and efficient to obtain weight function of EMA by means of finite element numerical analysis.

2012 ◽  
Vol 550-553 ◽  
pp. 3395-3399 ◽  
Author(s):  
Kai Xia Wei ◽  
Shu Long Gu ◽  
Long Qing He

The weight function method that uses a known weight function has been a general tool for the signal analysis of the electromagnetic flowmeter(EMF). However, it is difficult to solve the voltage equation directly by analytical method in order to get weight function for the partially filled pipe electromagnetic flowmeter(EMF-PF). The finite element numerical analysis method is tried to solve the weight function for the EMF-PF in this paper. The results show that weight function for EMF-PF relates to fill height of liquid in partially filled pipes, and there is a nonlinear function relationship between weight function for EMF-PF and fullness degree of liquid in the pipe.


2017 ◽  
Vol 54 (2) ◽  
pp. 195-202
Author(s):  
Vasile Nastasescu ◽  
Silvia Marzavan

The paper presents some theoretical and practical issues, particularly useful to users of numerical methods, especially finite element method for the behaviour modelling of the foam materials. Given the characteristics of specific behaviour of the foam materials, the requirement which has to be taken into consideration is the compression, inclusive impact with bodies more rigid then a foam material, when this is used alone or in combination with other materials in the form of composite laminated with various boundary conditions. The results and conclusions presented in this paper are the results of our investigations in the field and relates to the use of LS-Dyna program, but many observations, findings and conclusions, have a general character, valid for use of any numerical analysis by FEM programs.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Azhar Iqbal ◽  
Nur Nadiah Abd Hamid ◽  
Ahmad Izani Md. Ismail

This paper is concerned with the numerical solution of the nonlinear Schrödinger (NLS) equation with Neumann boundary conditions by quintic B-spline Galerkin finite element method as the shape and weight functions over the finite domain. The Galerkin B-spline method is more efficient and simpler than the general Galerkin finite element method. For the Galerkin B-spline method, the Crank Nicolson and finite difference schemes are applied for nodal parameters and for time integration. Two numerical problems are discussed to demonstrate the accuracy and feasibility of the proposed method. The error norms L 2 , L ∞ and conservation laws I 1 ,   I 2 are calculated to check the accuracy and feasibility of the method. The results of the scheme are compared with previously obtained approximate solutions and are found to be in good agreement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ouadie Koubaiti ◽  
Said EL Fakkoussi ◽  
Jaouad El-Mekkaoui ◽  
Hassan Moustachir ◽  
Ahmed Elkhalfi ◽  
...  

Purpose This paper aims to propose a new boundary condition and a web-spline basis of finite element space approximation to remedy the problems of constraints due to homogeneous and non-homogeneous; Dirichlet boundary conditions. This paper considered the two-dimensional linear elasticity equation of Navier–Lamé with the condition CAB. The latter allows to have a total insertion of the essential boundary condition in the linear system obtained; without using a numerical method as Lagrange multiplier. This study have developed mixed finite element; method using the B-splines Web-spline space. These provide an exact implementation of the homogeneous; Dirichlet boundary conditions, which removes the constraints caused by the standard; conditions. This paper showed the existence and the uniqueness of the weak solution, as well as the convergence of the numerical solution for the quadratic case are proved. The weighted extended B-spline; approach have become a much more workmanlike solution. Design/methodology/approach In this paper, this study used the implementation of weighted finite element methods to solve the Navier–Lamé system with a new boundary condition CA, B (Koubaiti et al., 2020), that generalises the well-known basis, especially the Dirichlet and the Neumann conditions. The novel proposed boundary condition permits to use a single Matlab code, which summarises all kind of boundary conditions encountered in the system. By using this model is possible to save time and programming recourses while reap several programs in a single directory. Findings The results have shown that the Web-spline-based quadratic-linear finite elements satisfy the inf–sup condition, which is necessary for existence and uniqueness of the solution. It was demonstrated by the existence of the discrete solution. A full convergence was established using the numerical solution for the quadratic case. Due to limited regularity of the Navier–Lamé problem, it will not change by increasing the degree of the Web-spline. The computed relative errors and their rates indicate that they are of order 1/H. Thus, it was provided their theoretical validity for the numerical solution stability. The advantage of this problem that uses the CA, B boundary condition is associated to reduce Matlab programming complexity. Originality/value The mixed finite element method is a robust technique to solve difficult challenges from engineering and physical sciences using the partial differential equations. Some of the important applications include structural mechanics, fluid flow, thermodynamics and electromagnetic fields (Zienkiewicz and Taylor, 2000) that are mainly based on the approximation of Lagrange. However, this type of approximation has experienced a great restriction in the level of domain modelling, especially in the case of complicated boundaries such as that in the form of curvilinear graphs. Recently, the research community tried to develop a new way of approximation based on the so-called B-spline that seems to have superior results in solving the engineering problems.


2014 ◽  
Vol 638-640 ◽  
pp. 755-758
Author(s):  
Shao Jun Huo ◽  
Fu Guo Tong ◽  
Gang Liu

The dam foundation seepage control is usually a main work of dam design. This paper presented the effects of different concrete curtain boundary conditions on the dam foundation seepage control through numerical calculation with the finite element method. The results show that the depth of concrete curtain strongly depends on the permeability of dam foundation. The middle of curtain should be deeper than its sides if the permeability of central riverbed is higher. Therefore the design of curtain should be based on the numerical analysis of the dam foundation seepage with different curtain boundary conditions in order to make sure the safety and economy.


2012 ◽  
Vol 212-213 ◽  
pp. 643-646
Author(s):  
Qing Jiang ◽  
Huan Jun Lai ◽  
Zhi Zhong Su

Highlight advantages of the finite element method is suitable for non-linear, non-homogeneous, complex boundary conditions. The paper adopts the finite element method to analysis culvert stress in Valley terrain. Gain that when the filling height H=40 meters, considering the valley topography calculated Ks=1.19, otherwise the Ks=1.435, the difference is about 17%. Therefore, the effects of the valley terrain to the high embankment culvert can not be ignored.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document