The Effects of the Wear Elongation on the Load of a Long-Distance Transmission Chain

2013 ◽  
Vol 456 ◽  
pp. 60-64 ◽  
Author(s):  
Jun Tian Zhao ◽  
Shun Zeng Wang ◽  
Zhen Xing Wang

This paper is on the effects of the wear elongation on a long-distance transmission roller chain. It presents the formulas of load calculation and the formulaic relationship between load and wear elongation in theory, with the point-by-point calculation method and chains/sprockets gearing model. With RecurDyn software for the analysis and verification of the theoretical results, it concludes that the total tension of every chain is the sum of static load and the corresponding proportion of dynamic load, and that a logical pre-tension can effectively reduce the vibration.

2014 ◽  
Vol 607 ◽  
pp. 209-212
Author(s):  
Jun Tian Zhao ◽  
Shun Zeng Wang ◽  
Xiang Yang

Based on the elastic model of a long-distance transmission roller chain, the elastodynamic analysis was taken in this paper, which has given unregulated displacement of chains. With RecurDyn software for the analysis and verification of the theoretical results, the displacement curves of X-axis, Y-axis and total displacement was obtained, which proved that the elastodynamic analysis on long-distance transmission roller chains is feasible with a continuous model.


Author(s):  
A.A. Komarov ◽  

The practices of hazardous and unique facilities’ construction imply that specific attention is paid to the issues of safety. Threats associated with crash impacts caused by moving cars or planes are considered. To ensure safety of these construction sites it is required to know the potential dynamic loads and their destructive capacity. This article considers the methodology of reducing dynamic loads associated with impacts caused by moving collapsing solids and blast loads to equivalent static loads. It is demonstrated that practically used methods of reduction of dynamic loads to static loads are based in schematization only of the positive phase of a dynamic load in a triangle forms are not always correct and true. The historical roots of this approach which is not correct nowadays are shown; such approach considered a detonation explosion as a source of dynamic load, including TNT and even a nuclear weapon. Application of the existing practices of reduction of dynamic load to static load for accidental explosions in the atmosphere that occur in deflagration mode with a significant vacuumization phase may cause crucial distortion of predicted loads for the construction sites. This circumstance may become a matter of specific importance at calculations of potential hazard of impacts and explosions in unique units — for instance, in the nuclear plants. The article considers a situation with a plane crash, the building structure load parameters generated at the impact caused by a plane impact and the following deflagration explosion of fuel vapors are determined.


2021 ◽  
Vol 14 (3) ◽  
pp. 36-44
Author(s):  
S. Nikolenko ◽  
Svetlana Sazonova ◽  
Viktor Asminin

A study of the properties of dispersed-reinforced concrete and a study of the effect of dispersed reinforcement on the operation of structures was carried out, mainly with a static load of the same sign. Based on the results of experimental studies, a comparison was made of the work of dispersed-laminated structures under alternating dynamic action of high intensity with the work of reinforced concrete beam elements under similar influences. The results of experimental studies of cubes and prisms for static and dynamic compression are also presented. The results of experimental studies allow us to conclude that there is a significant effect of dispersed reinforcement on the operation of structures under the investigated influences and the feasibility of combined reinforcement of structures. The use of dispersed reinforcement in structures will increase the resistance of structures to such influences.


2021 ◽  
Author(s):  
Matthew Grimes ◽  
Nico Van Rensburg ◽  
Stuart Mitchell

Abstract This paper presents on a non-invasive, IoT-based method for rapidly determining the presence and location of spontaneous leaks in pressurized lines transporting any type of product (e.g., oil, gas, water, etc.). Specific applications include long-distance transmission lines, gathering networks at well sites, and offshore production risers. The methodology combines proven negative pressure wave (NPW) sensing with advanced signal processing to minimize false positives and accurately identify the presence of small spontaneous leaks within seconds of their occurrence. In the case of long-distance transmission pipelines, the location of the leak can be localized to within 20-50 feet. The solution was commercialized in 2020 and has undergone extensive testing to verify its capabilities. It is currently in use by several operators, both onshore and offshore.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zeng-qiang Yang ◽  
Hong-mei Wang ◽  
De-quan Sun ◽  
Xian-jian Ma ◽  
Ming-bao Xu ◽  
...  

In order to study the occurrence mechanism of rock burst in L-shaped zone during a fully mechanized mining period, the No. 705 working face which is located in Baojishan Colliery is taken as a typical engineering background. By means of in situ investigation, theoretical analysis, numerical simulation, in situ tests, and relevant monitoring methods, the occurrence mechanism of rock burst and corresponding prevention technology are studied. The results show that a coal pillar with some confining pressure in the L-shaped zone is established by FLAC3D numerical simulation software, and the numerical simulation results indicate that the change in static load has a greater effect than dynamic load on coal pillar unstable failure; the static load plays a role in storing energy, and dynamic load plays a role in inducing rock burst; the bolt-mesh-cable support and high-pressure water jet unloading combined technology is put forward to prevent rock burst in roadways, and the numerical simulation results show that stress distribution of surrounding rock meets the model of strong-soft-strong (3S) structure, and the moment distribution is reasonable. In the follow-up mining, a limit value of coal fines is used to determine that this measure is a reasonable method to prevent rock burst. The study conclusions provide theoretical foundation and new guidance for preventing rock burst by synergistic effect technology in roadways.


Sign in / Sign up

Export Citation Format

Share Document