Gobi Inclined Excavation Based Numerical Analysis

2013 ◽  
Vol 459 ◽  
pp. 631-636
Author(s):  
Li Qin ◽  
Hai Jian Zhang

Gobi inclined excavation foundation is based the advantages of good direct excavation, this paper mainly studied the angle inclined excavation foundation problems. Through the force, the size of the displacement, the optimal measure the tilt angle. And determine the limit load in the text.

2013 ◽  
Vol 477-478 ◽  
pp. 132-134
Author(s):  
Jin Xia Liu ◽  
Chong Chen ◽  
Liang Wang ◽  
Cong Zhang

This paper has conducted a structural analysis by workbench after establishing a stable platform for automotive three-dimensional model, primarily concerning whether the platform can provide a benchmark to meet the requirements of equipment, including the numerical analysis of whether the platform tilt angle under load can achieve the requirements as well as the scheme of improvement direction of the structure.


2017 ◽  
Vol 22 (1) ◽  
pp. 49-80 ◽  
Author(s):  
M. Graba

Abstract This paper provides a numerical analysis of selected parameters of fracture mechanics for double-edge notched specimens in tension, DEN(T), under plane strain conditions. The analysis was performed using the elastic-plastic material model. The study involved determining the stress distribution near the crack tip for both small and large deformations. The limit load solution was verified. The J-integral, the crack tip opening displacement, and the load line displacement were determined using the numerical method to propose the new hybrid solutions for calculating these parameters. The investigations also aimed to identify the influence of the plate geometry and the material characteristics on the parameters under consideration. This paper is a continuation of the author’s previous studies and simulations in the field of elastic-plastic fracture mechanics [4, 6, 16, 17, 31].


2011 ◽  
Vol 21 (06) ◽  
pp. 1291-1316 ◽  
Author(s):  
GUILLAUME CARLIER ◽  
MYRIAM COMTE ◽  
IOAN IONESCU ◽  
GABRIEL PEYRÉ

This paper proposes a numerical scheme to approximate the solution of (vectorial) limit load problems. The method makes use of a strictly convex perturbation of the problem, which corresponds to a projection of the deformation field under bounded deformation and incompressibility constraints. The discretized formulation of this perturbation converges to the solution of the original landslide problem when the amplitude of the perturbation tends to zero. The projection is computed numerically with a multi-step gradient descent on the dual formulation of the problem.


2015 ◽  
Vol 20 (1) ◽  
pp. 97-108 ◽  
Author(s):  
M. Krajewski ◽  
P. Iwicki

Abstract The paper is devoted to the numerical and experimental research of stability of a truss with side elastic supports at the top chord. The structure is a model of a real roof truss scaled by factor ¼. The linear buckling analysis and non-linear static analysis were carried out. The buckling length factor for the compressed top chord was calculated and the limit load for the imperfect truss shell model with respect to brace stiffness was obtained. The relation between brace normal force and loading of the truss is presented. The threshold stiffness of braces necessary to obtain the maximum buckling load was found. The truss load bearing capacity obtained from numerical analysis was compared with Eurocode 3 requirements.


1986 ◽  
Vol 108 (4) ◽  
pp. 796-805 ◽  
Author(s):  
A. S. Lavine ◽  
R. Greif ◽  
J. A. C. Humphrey

A three-dimensional numerical analysis of natural convection in a toroidal thermosyphon has been performed. The results confirm the experimental observations of three dimensionality, streamwise flow reversal, and secondary motion. The flow reversals reduce the wall friction and buoyancy forces, and consequently have a strong effect on the average axial velocity.


Author(s):  
B. Cunningham ◽  
D.G. Ast

There have Been a number of studies of low-angle, θ < 4°, [10] tilt boundaries in the diamond lattice. Dislocations with Burgers vectors a/2<110>, a/2<112>, a<111> and a<001> have been reported in melt-grown bicrystals of germanium, and dislocations with Burgers vectors a<001> and a/2<112> have been reported in hot-pressed bicrystals of silicon. Most of the dislocations were found to be dissociated, the dissociation widths being dependent on the tilt angle. Possible dissociation schemes and formation mechanisms for the a<001> and a<111> dislocations from the interaction of lattice dislocations have recently been given.The present study reports on the dislocation structure of a 10° [10] tilt boundary in chemically vapor deposited silicon. The dislocations in the boundary were spaced about 1-3nm apart, making them difficult to resolve by conventional diffraction contrast techniques. The dislocation structure was therefore studied by the lattice-fringe imaging technique.


Author(s):  
P.R. Swann ◽  
A.E. Lloyd

Figure 1 shows the design of a specimen stage used for the in situ observation of phase transformations in the temperature range between ambient and −160°C. The design has the following features a high degree of specimen stability during tilting linear tilt actuation about two orthogonal axes for accurate control of tilt angle read-out high angle tilt range for stereo work and habit plane determination simple, robust construction temperature control of better than ±0.5°C minimum thermal drift and transmission of vibration from the cooling system.


Author(s):  
Delbert E. Philpott ◽  
David Leaffer

There are certain advantages for electron probe analysis if the sample can be tilted directly towards the detector. The count rate is higher, it optimizes the geometry since only one angle need be taken into account for quantitative analysis and the signal to background ratio is improved. The need for less tilt angle may be an advantage because the grid bars are not moved quite as close to each other, leaving a little more open area for observation. Our present detector (EDAX) and microscope (Philips 300) combination precludes moving the detector behind the microscope where it would point directly at the grid. Therefore, the angle of the specimen was changed in order to optimize the geometry between the specimen and the detector.


Sign in / Sign up

Export Citation Format

Share Document