Thermal Analysis of Lithium Ion Batteries Using in HEV

2013 ◽  
Vol 470 ◽  
pp. 362-365 ◽  
Author(s):  
Gaoussou Hadia Fofana ◽  
You Tong Zhang

The lithium ion battery, thanks to their high density and high power, became promotes element for hybrid and EV vehicles. After several recent researches, it has been proved that lithium ion batteries are currently confronts a problem of temperature rise during their operation discharge, which affects the batteries performance, efficiency and reduces the life of lithium ion battery. However, this work is set to access the three dimensional analytical modeling based on Greens Function technique to study the thermal behavior of lithium-ion battery during discharge with different discharge rates (0.3C, C/2,1C, 2C,) and strategies natural convection cooling on the surface of the battery is performed.

CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3043-3048 ◽  
Author(s):  
Lingyu Zhang ◽  
Zhigang Gao ◽  
Haiming Xie ◽  
Chungang Wang ◽  
Lu Li ◽  
...  

A facile, green, mild and one-step conventional heating method was developed to synthesize monodisperse Sn-doped Fe2O3 nanoclusters with a novel spindle-like 3D architecture as anode materials for lithium-ion batteries.


2010 ◽  
Vol 25 (8) ◽  
pp. 1588-1594 ◽  
Author(s):  
Bin Liu ◽  
Da Deng ◽  
Jim Yang Lee ◽  
Eray S. Aydil

A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200–250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.


2020 ◽  
Vol 71 (4) ◽  
pp. 615-632
Author(s):  
Jing Jing Li ◽  
Meng Chen

The optimal energy and power performance of lithium ion batteries can be attained if a suitable thermal battery management system is used. Furthermore, to ensure the safe operation, a well functioning temperature control method, is needed. To achieve these goals, the simulation software COMSOL Multiphysics used to construct a three-dimensional electrochemical/thermal model of a monomer lithium ion battery. The simulation makes it possible to study the thermal characteristics at different ambient temperatures and different discharge rates. The obtained main outcomes are 1) The temperature of the lithium ion battery increases with increasing discharge ratio, and a sudden temperature increase is observed for higher discharge ratios, 2) For constant discharge rates, the temperature increase of the battery occurs mainly in the positive and negative electrode region, while lower temperatures are observed in the center and lower-edge region. A comparison between simulation and obtained date, indicates that the three-dimensional electrochemical/thermal model of the monomer lithium ion battery described the lithium ion battery well in terms of both heat generation and heat transfer.


2014 ◽  
Vol 2 (34) ◽  
pp. 13801-13804 ◽  
Author(s):  
Wenjun Hao ◽  
Shimou Chen ◽  
Yingjun Cai ◽  
Lan Zhang ◽  
Zengxi Li ◽  
...  

3D hierarchical pompon-like Co3O4 porous spheres were produced by a simple hydrothermal method. The 3D structure is composed of many nanowires which gathered as a ring in the centre and fanned out via a special self-assembly fashion, resulting in good lithium ion battery performance.


2015 ◽  
Vol 8 (2) ◽  
pp. 456-477 ◽  
Author(s):  
Bin Luo ◽  
Linjie Zhi

This review summarizes the current progress toward the synthesis of three dimensional graphene-based composites and their application in lithium ion batteries.


Author(s):  
Xia Hua ◽  
Alan Thomas

Lithium-ion batteries are being increasingly used as the main energy storage devices in modern mobile applications, including modern spacecrafts, satellites, and electric vehicles, in which consistent and severe vibrations exist. As the lithium-ion battery market share grows, so must our understanding of the effect of mechanical vibrations and shocks on the electrical performance and mechanical properties of such batteries. Only a few recent studies investigated the effect of vibrations on the degradation and fatigue of battery cell materials as well as the effect of vibrations on the battery pack structure. This review focused on the recent progress in determining the effect of dynamic loads and vibrations on lithium-ion batteries to advance the understanding of lithium-ion battery systems. Theoretical, computational, and experimental studies conducted in both academia and industry in the past few years are reviewed herein. Although the effect of dynamic loads and random vibrations on the mechanical behavior of battery pack structures has been investigated and the correlation between vibration and the battery cell electrical performance has been determined to support the development of more robust electrical systems, it is still necessary to clarify the mechanical degradation mechanisms that affect the electrical performance and safety of battery cells.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Lithium-ion batteries are being implemented in different large-scale applications, including aerospace and electric vehicles. For these utilizations, it is essential to improve battery cells with a great life cycle because a battery substitute is costly. For their implementation in real applications, lithium-ion battery cells undergo extension during the course of discharging and charging. To avoid disconnection among battery pack ingredients and deformity during cycling, compacting force is exerted to battery packs in electric vehicles. This research used a mechanical design feature that can address these issues. This investigation exhibits a comprehensive description of the experimental setup that can be used for battery testing under pressure to consider lithium-ion batteries’ safety, which could be employed in electrified transportation. Besides, this investigation strives to demonstrate how exterior force affects a lithium-ion battery cell’s performance and behavior corresponding to static exterior force by monitoring the applied pressure at the dissimilar state of charge. Electrochemical impedance spectroscopy was used as the primary technique for this research. It was concluded that the profiles of the achieved spectrums from the experiments seem entirely dissimilar in comparison with the cases without external pressure. By employing electrochemical impedance spectroscopy, it was noticed that the pure ohmic resistance, which is related to ion transport resistance of the separator, could substantially result in the corresponding resistance increase.


2021 ◽  
Author(s):  
chunhong lei ◽  
Iain M Aldous ◽  
Jennifer Hartley ◽  
Dana Thompson ◽  
Sean Scott ◽  
...  

Decarbonisation of energy will rely heavily, at least initially, on the use of lithium ion batteries for automotive transportation. The projected volumes of batteries necessitate the development of fast and...


Sign in / Sign up

Export Citation Format

Share Document