Assessment of Environmental Noise and Air Quality in Critical Areas at UiTM Engineering Complex

2013 ◽  
Vol 471 ◽  
pp. 125-129
Author(s):  
N.V. David ◽  
K. Ismail

Excessive environmental noise and poor air quality can be adverse to human health, living comfort and the environment itself. Measurement of sound pressure levels and air quality in critical areas including libraries, campus areas, public parks and hospitals thus becomes necessary to monitor and mitigate existing noise levels. In a university environment, student activities will be less disrupted if the locations of the activities are sufficiently away from noise sources. The present study is intended to measure sound levels and air quality around the Engineering Complex, Universiti Teknologi Mara, Shah Alam. The measured data is compared with to acceptable sound pressure levels and air quality index specified by the Department of Environment (DOE), Malaysia. Sound pressure levels are measured using the Castle Sound Level Meter Type 6224 and air quality measurement was done by using the BW Gas Alert MicroClip XT device. Both measurements were conducted at five selected stations around the Engineering Complex for three times each weekday for five weeks. Results obtained indicated that sound levels at some locations and time zones are above the thresholds recommended by the DOE. The air quality is acceptable in most locations except the vicinity of a bus stop. With the growing number of students in the university and other factors like construction and redevelopment of existing roads, a continuously increasing noise situations and air pollution proportional to the traffic flow is inevitable.

2021 ◽  
Author(s):  
Jacob Job

In 2015, the Natural Sounds and Night Skies Division (NSNSD) received a request to collect baseline acoustical data at Mesa Verde National Park (MEVE). Between July and August 2015, as well as February and March 2016, three acoustical monitoring systems were deployed throughout the park, however one site (MEVE002) stopped recording after a couple days during the summer due to wildlife interference. The goal of the study was to establish a baseline soundscape inventory of backcountry and frontcountry sites within the park. This inventory will be used to establish indicators and thresholds of soundscape quality that will support the park and NSNSD in developing a comprehensive approach to protecting the acoustic environment through soundscape management planning. Additionally, results of this study will help the park identify major sources of noise within the park, as well as provide a baseline understanding of the acoustical environment as a whole for use in potential future comparative studies. In this deployment, sound pressure level (SPL) was measured continuously every second by a calibrated sound level meter. Other equipment included an anemometer to collect wind speed and a digital audio recorder collecting continuous recordings to document sound sources. In this document, “sound pressure level” refers to broadband (12.5 Hz–20 kHz), A-weighted, 1-second time averaged sound level (LAeq, 1s), and hereafter referred to as “sound level.” Sound levels are measured on a logarithmic scale relative to the reference sound pressure for atmospheric sources, 20 μPa. The logarithmic scale is a useful way to express the wide range of sound pressures perceived by the human ear. Sound levels are reported in decibels (dB). A-weighting is applied to sound levels in order to account for the response of the human ear (Harris, 1998). To approximate human hearing sensitivity, A-weighting discounts sounds below 1 kHz and above 6 kHz. Trained technicians calculated time audible metrics after monitoring was complete. See Methods section for protocol details, equipment specifications, and metric calculations. Median existing (LA50) and natural ambient (LAnat) metrics are also reported for daytime (7:00–19:00) and nighttime (19:00–7:00). Prominent noise sources at the two backcountry sites (MEVE001 and MEVE002) included vehicles and aircraft, while building and vehicle predominated at the frontcountry site (MEVE003). Table 1 displays time audible values for each of these noise sources during the monitoring period, as well as ambient sound levels. In determining the current conditions of an acoustical environment, it is informative to examine how often sound levels exceed certain values. Table 2 reports the percent of time that measured levels at the three monitoring locations were above four key values.


2021 ◽  
Vol 263 (5) ◽  
pp. 1586-1593
Author(s):  
Alice Elizabeth Gonzalez ◽  
Pablo Gianoli Kovar ◽  
Lady Carolina Ramírez ◽  
Micaela Luzardo Rivero

On March 13, 2020, the first cases of SARS-COVID19 were detected in Uruguay. During the first weeks of the pandemic, mobility was significantly reduced with the slogan "If you can, stay home"; it was not a mandatory but voluntary confinement. After a couple of months, there was a big drop in the number of people affected by the disease. Thus, the Municipality of Montevideo, betting on a more human and walkable city, defined that the main avenue of the city had a pedestrian section on Saturday afternoons. This resulted in a greater enjoyment of the city by its inhabitants, as they had more space to walk while maintaining safe distances between people. It was also possible to promote trading, since classically Ave. 18 de Julio is also a commercial stroll. Additionally, the sound pressure levels recorded by the Municipality's stationary sound level meters located at three points along the avenue, showed the reduction of environmental sound levels in pedestrian areas, improving the acoustic quality of the walk. In this paper, sound pressure levels on Saturday afternoons at different times of the year before, during and after the initial lockdown due to the COVID-19 pandemic, are compared and discussed.


2020 ◽  
Vol 38 (3) ◽  
Author(s):  
Alma Damaris Hernández-Salazar ◽  
Josefina Gallegos-Martínez ◽  
Jaime Reyes-Hernández

Objective. Determine the level of environmental and periauricular noise in preterm babies and identify the sources generating noise in the Neonatal Intensive Care Unit -NICU- of a reference hospital in San Luis Potosí, Mexico. Methods. Cross-sectional and analytic study of the measurement of the level of environmental noise in five critical areas of the NICU, according with the method of measurement of noise from fixed sources by the Mexican Official Norm and periauricular at 20 cm from the preterm patient’s pinna. The measurements were carried out during three representative days of a week,morning, evening and nocturnal shifts. A STEREN 400 sound level meter was used with 30 to 130 dB range of measurement and a rate of 0.5 s. Results. The average level of periauricular noise (64.5±1.91dB) was higher than the environmental noise (63.3±1.74 dB) during the days and shifts evaluated. The principal noise sources were activities carried out by the staff, like the nursing change of shift and conversations by the staff, which raised the level continuously or intermittently, operation of vital support equipment (alarms) and incidences (clashing of baby bottles and moving furnishings) producedsudden rises of noise. Conclusions. Environmental and periauricular noise in NICU exceeds by two and almost three times the 45 dB during the day and 35 dB at night from the norm in hospitals. It is necessary to implement permanent noise reduction programs to prevent sequelae in the preterm infant and professional burnout in the nursing staff.


Author(s):  
Greicikelly Gaburro Paneto ◽  
Cristina Engel de Alvarez ◽  
Paulo Henrique Trombetta Zannin

In contemporary cities, and usually without realizing it, the population has been exposed to high sound pressure levels, which besides causing discomfort, can lead to health problems. Considering that a large part of this noise comes from emission from motor vehicles, this research aims to evaluate the sound behavior in sound environments configured by voids in the urban fabric, in order to identify whether open spaces can act as attenuators of sound levels. To obtain the expected results, the methodology used was structured from a review of the state-of-the-art and computer simulations relating the variables that influence the formation of urban space and sound emission and propagation, taking as a case study an urban portion of the municipality of Vitória/ES. In parallel, questionnaires were applied to evaluate the user's perception of their exposure. The measurement results indicated that the sound pressure levels caused by traffic noise are above the limit tolerated limit by the NBR norm 10151:2000 for the daytime period. In turn, the results obtained from the population indicated that there is little perception of noise by the users of the spaces surveyed.


Author(s):  
Mohammad Javad Zare Sakhvidi ◽  
Hamideh Bidel ◽  
Ahmad Ali Kheirandish

 Background: Chronic occupational exposure to noise is an unavoidable reality in the country's textile industry and even other countries. The aim of this study was to compare the sound pressure level in different parts of the textile industry in Yazd and in different parts of the textile industry. Methods: This cross-sectional study was performed on 930 textile workers in Yazd. A questionnaire was used to obtain demographic information and how to use protective equipment. Then, to obtain the sound pressure level of each unit and device and to use the measurement principles, a calibrated sound level meter was used. Then the results were analyzed using SPSS Ver.29 software. Results: The participants in this study were 714 males and 216 females with a mean age of 35.27 and 33.63 years, respectively. Seven hundred fifty-six participants (81.29%) were exposed to sound pressure levels higher than 85 dB. Among the participants, only 18.39% of the people used a protective phone permanently. Except for factory E, with an average sound pressure level of 77.78 dB, the rest of the factories had an average sound pressure level higher than the occupational exposure limit. The sound measurement results of different devices show that the sound pressure levels above 90 dB are related to the parts of Dolatab, Ring, Kinetting (knitting), Chanel, Autoconer, Dolakni, Open End, MultiLakni, Tabandegi, Texture, and Poy. Conclusion: Based on the results of the present study, noise above 90 dB is considered as one of the main risk factors in most parts of the textile industry (spinning and weaving), which in the absence of engineering, managerial or individual controls on it causes hearing loss in becoming employees of this industry


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 335-345
Author(s):  
Walter Montano

The gas extraction wells are in Amazonian rainforest and by them there are their industrial facilities. The pipeline has about 800 km with four pumps stations and two compressor stations. The challenge of conducting sound measurements was important-there is no specialized literature-and other noise "sources" are howler monkeys, cicadidae chirping, woodpeckers, trees´foliage, etc. However the problem is simply because those fixed industrial facilities are the only ones. People live in isolated hamlet on the side of dirt roads, so they are exposed 24/7 to the continuous noise; at homes 4 km away from the plants the sound level is 60 dBC, but in the spectrum of ILFN tones could not be identified. This Paper presents the procedures that were developed to identify the ILFN tones, improving the methods proposed in ISO 1996-2, writing a software that "automatically eliminates" the sound levels that don´t belong to the industry,


SLEEP ◽  
2021 ◽  
Author(s):  
Bastien Lechat ◽  
Hannah Scott ◽  
Felix Decup ◽  
Kristy L Hansen ◽  
Gorica Micic ◽  
...  

Abstract Study Objectives This study was designed to test the utility of cardiovascular responses as markers of potentially different environmental noise disruption effects of wind farm compared to traffic noise exposure during sleep. Methods Twenty participants underwent polysomnography. In random order, and at six sound pressure levels from 33 dBA to 48 dBA in 3 dB increments, three types of wind farm and two types of road traffic noise recordings of 20-sec duration were played during established N2 or deeper sleep, each separated by 20 seconds without noise. Each noise sequence also included a no-noise control. Electrocardiogram and finger pulse oximeter recorded pulse wave amplitude changes from the pre-noise onset baseline following each noise exposure and were assessed algorithmically to quantify the magnitude of heart rate and finger vasoconstriction responses to noise exposure. Results Higher sound pressure levels were more likely to induce drops in pulse wave amplitude. Sound pressure levels as low as 39 dBA evoked a pulse wave amplitude response (Odds ratio [95% confidence interval]; 1.52 [1.15, 2.02]). Wind farm noise with amplitude modulation was less likely to evoke a pulse wave amplitude response than the other noise types, but warrants cautious interpretation given low numbers of replications within each noise type. Conclusion These preliminary data support that drops in pulse wave amplitude are a particularly sensitive marker of noise-induced cardiovascular responses during. Larger trials are clearly warranted to further assess relationships between recurrent cardiovascular activation responses to environmental noise and potential long-term health effects.


2021 ◽  
Vol 263 (3) ◽  
pp. 3615-3624
Author(s):  
Parag Chaudhari ◽  
Jose Magalhaes ◽  
Aparna Salunkhe

Aeroacoustic noise is one of the important characteristics of the fan design. Computational Aeroacoustics (CAA) can provide better design options without relying on physical prototypes and reduce the development time and cost. There are two ways of performing CAA analysis; one-step and two-step approach. In one-step CAA, air flow and acoustic analysis are carried out in a single software. In two-step approach, air flow and acoustic analysis are carried out in separate software. Two-step CAA approach can expedite the calculation process and can be implemented in larger and complex domain problems. For the work presented in this paper, a mockup of an underhood cooling fan was designed. The sound pressure levels were measured for different installation configurations. The sound pressure level for one of the configurations was calculated with two-step approach and compared with test data. The compressible fluid flow field was first computed in a commercially available computational fluid dynamics software. This flow field was imported in a separate software where fan noise sources were computed and further used to predict the sound pressure levels at various microphone locations. The results show an excellent correlation between test and simulation for both tonal and broadband components of the fan noise.


2000 ◽  
Vol 34 (2) ◽  
pp. 136-144 ◽  
Author(s):  
E. Böjrk ◽  
T. Nevalainen ◽  
M. Hakumäki ◽  
H.-M. Voipio

Since sounds may induce physiological and behavioural changes in animals, it is necessary to assess and define the acoustic environment in laboratory animal facilities. Sound studies usually express sound levels as unweighted linear sound pressure levels. However, because a linear scale does not take account of hearing sensitivity-which may differ widely both between and within species at various frequencies-the results may be spurious. In this study a novel sound pressure level weighting for rats, R-weighting, was calculated according to a rat's hearing sensitivity. The sound level of a white noise signal was assessed using R-weighting, with H-weighting tailored for humans, A-weighting and linear sound pressure level combined with the response curves of two different loudspeakers. The sound signal resulted in different sound levels depending on the weighting and the type of loudspeaker. With a tweeter speaker reproducing sounds at high frequencies audible to a rat, R- and A-weightings gave similar results, but the H-weighted sound levels were lower. With a middle-range loudspeaker, unable to reproduce high frequencies, R-weighted sound showed the lowest sound levels. In conclusion, without a correct weighting system and proper equipment, the final sound level of an exposure stimulus can differ by several decibels from that intended. To achieve reliable and comparable results, standardization of sound experiments and assessment of the environment in animal facilities is a necessity. Hence, the use of appropriate species-specific sound pressure level weighting is essential. R-weighting for rats in sound studies is recommended.


Sign in / Sign up

Export Citation Format

Share Document